And so it goes – another year, another annual data point. As has become a habit (2009, 2010), here is a brief overview and update of some of the most relevant model/data comparisons. We include the standard comparisons of surface temperatures, sea ice and ocean heat content to the AR4 and 1988 Hansen et al simulations.
[Read more…] about 2011 Updates to model-data comparisons
Blog – realclimate.org – All Posts
Global Temperatures, Volcanic Eruptions, and Trees that Didn’t Bark
My co-authors and I have just published an article in Nature Geoscience (advance online publication here; associated press release here) which seeks to explain certain enigmatic features of tree-ring reconstructions of Northern Hemisphere (NH) temperatures of the past millennium. Most notable is the virtual absence of cooling in the tree-ring reconstructions during what ice core and other evidence suggest is the most explosive volcanic eruption of the past millennium–the AD 1258 eruption. Other evidence suggests wide-spread global climate impacts of this eruption [see e.g. the review by Emile-Geay et al (2008)]. We argue that this–and other missing episodes of volcanic cooling, are likely an artifact of biological growth effects, which lead to a substantial underestimation of the largest volcanic cooling events in trees growing near treeline. We speculate that this underestimation may also have led to overly low estimates of climate sensitivity in some past studies attempting to constrain climate model sensitivity parameters with proxy-reconstructed temperature changes.
Tree rings are used as proxies for climate because trees create unique rings each year that often reflect the weather conditions that influenced the growing season that year. For reconstructing past temperatures, dendroclimatologists typically seek trees growing at the boreal or alpine treeline, since temperature is most likely to be the limiting climate variable in that environment. But this choice may also prove problematic under certain conditions. Because the trees at these locations are so close to the threshold for growth, if the temperature drops just a couple of degrees during the growing season, there will be little or no growth and therefore a loss of sensitivity to any further cooling. In extreme cases, there may be no growth ring at all. And if no ring was formed in a given year, that creates a further complication, introducing an error in the chronology established by counting rings back in time.
[Read more…] about Global Temperatures, Volcanic Eruptions, and Trees that Didn’t Bark
So What’s A Teacher to Do?
Guest Commentary by Eugenie Scott, National Center for Science Education
Imagine you’re a middle-school science teacher, and you get to the section of the course where you’re to talk about climate change. You mention the “C” words, and two students walk out of the class.
Or you mention global warming and a hand shoots up.
“Mrs. Brown! My dad says global warming is a hoax!”
Or you come to school one morning and the principal wants to see you because a parent of one of your students has accused you of political bias because you taught what scientists agree about: that the Earth is getting warmer, and human actions have had an important role in this warming.
Or you pick up the newspaper and see that your state legislature is considering a bill that declares that accepted sciences like global warming (and evolution, of course) are “controversial issues” that require “alternatives” to be taught.
[Read more…] about So What’s A Teacher to Do?
Unforced Variations: February 2012
This month’s open thread. Current topics are focused on the laughingly bad Daily Mail article by David Rose, the fallout from the Wall Street Journal’s latest regurgitation of why no-one should ever do anything ever. And perhaps someone might want to audit some of David Whitehouse’s arithmetic and reading comprehension…
Or anything else. Within reason.
The AR4 attribution statement
Back in 2007, the IPCC AR4 SPM stated that:
“Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations.”
This is a clear statement that I think is very well supported and correctly reflects the opinion of most climate scientists on the subject (and was re-affirmed in two recent papers (Jones and Stott, 2011;, Huber and Knutti, 2011)). It isn’t an isolated conclusion from a single study, but comes from an assessment of the changing patterns of surface and tropospheric warming, stratospheric cooling, ocean heat content changes, land-ocean contrasts, etc. that collectively demonstrate that there are detectable changes occurring which we can attempt to attribute to one or more physical causes.
Yet, in a paper just out in BAMS (Curry and Webster, 2011) this statement is apparently evidence that IPCC is unable to deal with uncertainty. Furthermore, Judith Curry has reiterated on her blog that the term ‘most’ is imprecise and undefined. For instance:
Apart from the undefined meaning of “most” in AR4 (which was subsequently clarified by the IPCC), the range 50.1-95% is rather imprecise in the context of attribution.
However, Curry’s argument is far from convincing, nor is it well formed (why is there a cap at 95%?). Nor was it convincing when I discussed the issue with her in the comments at Collide-a-Scape last year where she made similar points. Since the C&W paper basically repeats that argument (as has also been noticed by Gabi Hegerl et al who have a comment on the paper (Hegerl et al.)), it is perhaps worth addressing these specific issues again.
[Read more…] about The AR4 attribution statement
References
- G.S. Jones, and P.A. Stott, "Sensitivity of the attribution of near surface temperature warming to the choice of observational dataset", Geophysical Research Letters, vol. 38, pp. n/a-n/a, 2011. http://dx.doi.org/10.1029/2011GL049324
- M. Huber, and R. Knutti, "Anthropogenic and natural warming inferred from changes in Earth’s energy balance", Nature Geoscience, vol. 5, pp. 31-36, 2011. http://dx.doi.org/10.1038/ngeo1327
- J.A. Curry, and P.J. Webster, "Climate Science and the Uncertainty Monster", Bulletin of the American Meteorological Society, vol. 92, pp. 1667-1682, 2011. http://dx.doi.org/10.1175/2011BAMS3139.1
- G. Hegerl, P. Stott, S. Solomon, and F. Zwiers, "Comment on “Climate Science and the Uncertainty Monster” J. A. Curry and P. J. Webster", Bulletin of the American Meteorological Society, vol. 92, pp. 1683-1685, 2011. http://dx.doi.org/10.1175/BAMS-D-11-00191.1
“Vision Prize”, an online poll of scientists about climate risk
A group of researchers at Carnegie Mellon University is trying to get a better understanding of the views of earth scientists regarding various climate change topics. They have set up an ongoing poll to do this, called Vision Prize. It’s a short (10 question) poll, covering topics like the rate of CO2 increase, predicted future temperatures, sea ice and sea level states, and hurricane frequencies. Early participants can designate a $20 donation from the group to a charity of their choice, upon completion. Please take a few minutes to help them out if qualified.
The dog is the weather
Update January 27: There is also another recent dog-based animations from Victoria (southeast Australia) explaining some of the key drivers of our climate and how some are changing.
A TV series that ran on Norwegian TV (NRK) last year included a simple and fun cartoon that demonstrates some important concepts relative to weather and climate:
In the animation, the man’s path can be considered as analogous to a directional climatic change, while the path traced by his dog’s whimsical movements represent weather fluctuations, as constrained by the man’s path, the leash, and the dog’s moment-by-moment decisions of what seems important to investigate in his small world. What might the leash length represent? The man’s momentary pause? The dog’s exact route relative to concepts of random variation? The messages in this animation are similar to the recent results of Grant Foster and Stefan Rahmstorf in ERL (see post here).
We’d also like to praise the TV-series ‘Siffer‘, hosted by an enthusiastic statistician explaining how most things in our world relate to mathematics. The series covers a range of subjects, for instance gambling theory, the Tragedy of the Commons, anecdotes about mathematical riddles, medical statistics, and construction design; it even answers why champagne from a large bottle tastes better than that from a smaller one. There is also an episode devoted to weather forecasting and climate.
Success in understanding our universe often depends on how the ‘story’ about it is told, and a big part of that often involves how mental images are presented. Mathematics and statistics can describe nature in great detail and “elegance”, but they are often difficult and inaccessible to the average person. Conversely, the man-and-dog animation is intuitive and easy to comprehend. Similarly, Hans Rosling’s Fun with Stats provides some very nice demonstrations of how to convey meaning via the creative display of numbers.
Open Climate 101 Online
Almost 3000 non-science major undergraduates at the University of Chicago have taken PHSC13400, Global Warming: Understanding the Forecast, since Ray Pierrehumbert and I (David Archer) first developed it back in 1995. Since the publication of the textbook for the class in 2005 (and a much-cleaned-up 2nd edition now shipping), enrollment has gone through the roof, it’s all I’ve been able to teach the last few years, trying to keep up with demand. I hear it is the largest class on campus, with 4-500 students a year out of an annual class of only around 1400. Now the content of this class is being served to the internet world at large: Open Climate 101.
An online model of methane in the atmosphere
I’ve put together an easy-to-play-with online model of methane in the atmosphere. I’m going to use it for teaching along with the rest of the Understanding the Forecast webmodels, but it was designed to be relevant to the issue of abrupt new methane burps as we’ve been ruminating about lately on Realclimate. [Read more…] about An online model of methane in the atmosphere
An Arctic methane worst-case scenario
Let’s suppose that the Arctic started to degas methane 100 times faster than it is today. I just made that number up trying to come up with a blow-the-doors-off surprise, something like the ozone hole. We ran the numbers to get an idea of how the climate impact of an Arctic Methane Nasty Surprise would stack up to that from Business-as-Usual rising CO2