There is little evidence for a connection between solar activity (as inferred from trends in galactic cosmic rays) and recent global warming. Since the paper by Friis-Christensen and Lassen (1991), there has been an enhanced controversy about the role of solar activity for earth’s climate. Svensmark (1998) later proposed that changes in the inter-planetary magnetic fields (IMF) resulting from variations on the sun can affect the climate through galactic cosmic rays (GCR) by modulating earth’s cloud cover. Svensmark and others have also argued that recent global warming has been a result of solar activity and reduced cloud cover. Damon and Laut have criticized their hypothesis and argue that the work by both Friis-Christensen and Lassen and Svensmark contain serious flaws. For one thing, it is clear that the GCR does not contain any clear and significant long-term trend (e.g. Fig. 1, but also in papers by Svensmark).
[Read more…] about Recent Warming But No Trend in Galactic Cosmic Rays

Eric Steig is an isotope geochemist at the University of Washington in Seattle. His primary research interest is use of ice core records to document climate variability in the past. He also works on the geological history of ice sheets, on ice sheet dynamics, on statistical climate analysis, and on atmospheric chemistry.
David Archer is a computational ocean chemist at the University of Chicago. He has published research on the carbon cycle of the ocean and the sea floor, at present, in the past, and in the future. Dr. Archer has worked on the ongoing mystery of the low atmospheric CO2 concentration during glacial time 20,000 years ago, and on the fate of fossil fuel CO2 on geologic time scales in the future, and its impact on future ice age cycles, ocean methane hydrate decomposition, and coral reefs. Archer has written a textbook for non-science major undergraduates called “