by Eric Steig and Gavin Schmidt
Long term temperature data from the Southern Hemisphere are hard to find, and by the time you get to the Antarctic continent, the data are extremely sparse. Nonetheless, some patterns do emerge from the limited data available. The Antarctic Peninsula, site of the now-defunct Larsen-B ice shelf, has warmed substantially. On the other hand, the few stations on the continent and in the interior appear to have cooled slightly (Doran et al, 2002; GISTEMP). At first glance this seems to contradict the idea of “global” warming, but one needs to be careful before jumping to this conclusion.
Climate Science
What does the lag of CO2 behind temperature in ice cores tell us about global warming?
This is an issue that is often misunderstood in the public sphere and media, so it is worth spending some time to explain it and clarify it. At least three careful ice core studies have shown that CO2 starts to rise about 800 years (600-1000 years) after Antarctic temperature during glacial terminations. These terminations are pronounced warming periods that mark the ends of the ice ages that happen every 100,000 years or so.
Does this prove that CO2 doesn’t cause global warming? The answer is no.
Michaels misquotes Hansen
Pat Michaels (under the guise of the Greening Earth society) is particularly fond of misquoting Jim Hansen, director of the NASA GISS laboratory (and in the interests of full disclosure, GS’s boss).
Recently he claimed that Dr. Hansen has now come around to the ‘skeptics’ (i.e. Pat Michaels) way of thinking and suggests that they agree on the (small) amount of warming to be expected in the future. Michaels quotes Hansen from a 2001 PNAS paper:
Climate model scenarios
A couple of commentators (Pat Michaels, Roy Spencer) recently raised an issue about the standard scenarios used to compare climate models, in this case related to a study on the potential increase in hurricane activity.
The biggest uncertainty in what will happen to climate in the future (say 30 years or more) is the course that the global economy will take and the changes in technology that may accompany that. Since climate scientists certainly don’t have a crystal ball, we generally take a range of scenarios or projections of future emissions of CO2 and other important forcings such as methane and aerosols.