On the second anniversary of Superstorm Sandy making landfall, we are running an extract from a new book by Adam Sobel “Storm Surge: Hurricane Sandy, Our Changing Climate, and Extreme Weather of the Past and Future”. It’s a great read covering the meteorology of the event, the preparation, the response and the implications for the future.
Hurricanes
Improving the Tropical Cyclone Climate Record
Guest Commentary by Christopher Hennon (UNC Asheville)
Get involved in a new citizen science project at CycloneCenter.org.
The poor quality of the tropical cyclone (TC) data record provides severe constraints on the ability of climate scientists to: a) determine to what degree TCs have responded to shifts in climate, b) evaluate theories on how TCs will respond to climate change in the future. The root cause for the poor data is the severity of the TC conditions (e.g. high wind, rough seas) and the remoteness of these storms – the vast majority of which form and remain well away from most observing networks. Thus, most TCs are not observed directly and those that are (with buoys, aircraft reconnaissance, ships) are often not sampled sufficiently (see the IBTrACS, (Knapp et al., 2010)).
This leaves tropical cyclone forecasters, who are ultimately responsible for recording TC tracks and intensities (i.e. maximum wind speeds), with a challenging problem. Fortunately, there is a tool called the Dvorak Technique which allows forecasters to make a reasonable determination of the TC intensity by simply analyzing a single infrared or visible satellite image, which is almost always available Velden et al., 2006). The technique calls for the analyst to determine the center location of the system, the cloud pattern type, the degree of organization of the pattern, and the intensity trend. A maximum surface wind speed is determined after the application of a number of rules and constraints.
The Dvorak Technique has been used for many years at all global tropical cyclone forecast centers and has been shown in many cases to yield a good estimate of maximum TC wind speed, when applied properly (Knaff et al., 2010). However, there is a level of analyst subjectivity inherent in the procedure; the cloud patterns are not always clear, it is sometimes difficult to accurately determine the storm center and the rules and constraints have been interpreted and applied differently across agencies. This introduces heterogeneity in the global TC record since the Dvorak Technique is usually the only available tool for assessing the maximum wind speed.
There has been recent work to eliminate the human element in the Dvorak Technique by automating the procedure. The Advanced Dvorak Technique (ADT) uses objective storm center and cloud pattern schemes to remove the subjectivity (Olander and Velden, 2007). All other classification rules and constraints are then applied and combined with additional statistical information to produce automated intensity estimates. Although the ADT skill is comparable to experienced human Dvorak analysts, large errors can occur if the scene type is not identified properly.
A new crowd sourcing project, called Cyclone Center, embraces the human element by enabling the public to perform a simplified version of the Dvorak Technique to analyze historical global tropical cyclone (TC) intensities (Hennon, 2012). Cyclone Center’s primary goal is to resolve discrepancies in the recent global TC record arising principally from inconsistent development of tropical cyclone intensity data. The Cyclone Center technique standardizes the classification procedure by condensing the Dvorak Technique to a few simple questions that can be answered by global, nonprofessional users.
One of the main advantages of this approach is the inclusion of thousands of users, instead of the 1-3 who would normally classify a TC image. This allows the computation of measures of uncertainty in addition to a mean intensity. Nearly 300,000 images, encompassing all global TCs that formed from 1978-2009, will be classified 30 times each – a feat that would take a dedicated team of twenty Dvorak-trained experts about 12 years to complete. Citizen scientists have already performed over 100,000 classifications since the project launch in September. Once the project is complete, a new dataset of global TC tracks and intensities will be made available to the community to contribute to our efforts to provide the best possible TC data record.
Interested readers are encouraged to learn more about and participate in the project at the cyclonecenter.org website (there are some FAQ on the project blog). The CycloneCenter project is a collaboration between the Citizen Science Alliance, NOAA National Climatic Data Center (NCDC), University of North Carolina at Asheville, and the Cooperative Institute for Climate and Satellites (CICS) – North Carolina.
References
- K.R. Knapp, M.C. Kruk, D.H. Levinson, H.J. Diamond, and C.J. Neumann, "The International Best Track Archive for Climate Stewardship (IBTrACS)", Bulletin of the American Meteorological Society, vol. 91, pp. 363-376, 2010. http://dx.doi.org/10.1175/2009BAMS2755.1
- C. Velden, B. Harper, F. Wells, J.L. Beven, R. Zehr, T. Olander, M. Mayfield, C.â. Guard, M. Lander, R. Edson, L. Avila, A. Burton, M. Turk, A. Kikuchi, A. Christian, P. Caroff, and P. McCrone, "The Dvorak Tropical Cyclone Intensity Estimation Technique: A Satellite-Based Method that Has Endured for over 30 Years", Bulletin of the American Meteorological Society, vol. 87, pp. 1195-1210, 2006. http://dx.doi.org/10.1175/BAMS-87-9-1195
- J.A. Knaff, D.P. Brown, J. Courtney, G.M. Gallina, and J.L. Beven, "An Evaluation of Dvorak Technique–Based Tropical Cyclone Intensity Estimates", Weather and Forecasting, vol. 25, pp. 1362-1379, 2010. http://dx.doi.org/10.1175/2010WAF2222375.1
- T.L. Olander, and C.S. Velden, "The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery", Weather and Forecasting, vol. 22, pp. 287-298, 2007. http://dx.doi.org/10.1175/WAF975.1
- C.C. Hennon, "Citizen scientists analyzing tropical cyclone intensities", Eos, Transactions American Geophysical Union, vol. 93, pp. 385-387, 2012. http://dx.doi.org/10.1029/2012EO400002
The IPCC report on extreme climate and weather events
The IPCC recently released the policy-maker’s summary (SREX-SPM) on extreme weather and climate events. The background for this report is a larger report that is due to be published in the near future, and one gets a taste of this in the ‘wordle‘ figure below. By the way, the phrase ‘ET’ in this context does not refer ‘extra-terrestrial’, and ‘AL’ is not a person, but these refer to the way of citing many scholars: ‘et al.‘
[Read more…] about The IPCC report on extreme climate and weather events
Going to extremes
There are two new papers in Nature this week that go right to the heart of the conversation about extreme events and their potential relationship to climate change. This is a complex issue, and one not well-suited to soundbite quotes and headlines, and so we’ll try and give a flavour of what the issues are and what new directions these new papers are pointing towards.
[Read more…] about Going to extremes
Of tempests, barren ground and a thousand furlongs of sea
Guest commentary by Ron Miller, NASA GISS
Several studies have shown that hurricane activity is generally reduced during years when there is a thick aerosol haze over the subtropical Atlantic. The haze is comprised mainly of soil particles, stripped by wind erosion from the barren ground over the Sahara and Sahel. These particles are lifted into the atmosphere and carried by the Trade winds as far as the Caribbean and Amazon basin. Plumes of dust streaming off the African coast are easily recognized in satellite imagery, and were even described by Charles Darwin during his voyage on the Beagle.
[Read more…] about Of tempests, barren ground and a thousand furlongs of sea
Climate Change and Tropical Cyclones (Yet Again)
By Rasmus Benestad & Michael Mann
Just as Typhoon Nargis has reminded us of the destructive power of tropical cyclones (with its horrible death toll in Burma–around 100,000 according to the UN), a new paper by Knutson et al in the latest issue of the journal Nature Geosciences purports to project a reduction in Atlantic hurricane activity (principally the ‘frequency’ but also integrated measures of powerfulness).
The close timing of the Knutson et al and Typhoon Nargis is of course coincidental. But the study has been accorded the unprecedented privilege (that is, for a climate change article published during the past 7 years) of a NOAA press conference. What’s the difference this time? Well, for one thing, the title of the paper: “Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions” (emphasis added).
[Read more…] about Climate Change and Tropical Cyclones (Yet Again)
Tropical cyclone history – part I: How reliable are past hurricane records?
Guest Commentary from Urs Neu
When discussing the influence of anthropogenic global warming on hurricane or tropical cyclone (TC) frequency and intensity (see e.g. here, here, and here), it is important to examine observed past trends. As with all climate variables, the hurricane record becomes increasingly uncertain when we go back in time. However, the hurricane record has some peculiarities: hurricanes are highly confined structures, so you have to be at the right place at the right time to observe them. Secondly, hurricanes spend most of their life in the open oceans, i.e. in regions where there are very few people and no fixed observations. This means that the reliability of the long-term hurricane record is dependent on who was measuring them, and how, at any given time. The implementation of new observation methods, for example, might have altered the quality of the record considerably. But how much? This crucial question has been widely discussed in the recent scientific literature (e.g. Chang and Guo 2007, Holland and Webster 2007, Kossin et al. 2007, Landsea 2007, Mann et al. 2007). Where do we stand at the moment? This post will concentrate on the North Atlantic, which has the longest record.
[Read more…] about Tropical cyclone history – part I: How reliable are past hurricane records?
Storm World: A Review
If you are a RealClimate regular, you are undoubtedly aware of our ongoing interest in the developments in the scientific understanding of potential hurricane-climate change linkages. This is an area of the science where a substantial body of significant new research has emerged even since RealClimate’s inception in late 2004. The scientific research in this area, and the media frenzy and political theatrics that have inescapably followed it, are thoughtfully placed in a broader historical context in a fascinating new book by Chris Mooney entitled Storm World: Hurricanes, Politics, and the Battle over Global Warming. Anyone who is at all interested in the scientific history that has led to our current understanding of Hurricanes and their potential linkages with climate change, will find this book a page turner. The book is a nice complement to Kerry Emanuel’s recent book Divine Wind: The History and Science of Hurricanes (which too is so readable that it lies on our coffee table). Mooney in a sense picks up where Emanuel’s left off. Like Emanuel, he explores the history of the science. But he uses this historical context, and his studies of the personalities of key actors, to explore how the current scientific debate can be traced back to a rift that has emerged over many decades between distinct communities of atmospheric scientists.
[Read more…] about Storm World: A Review
Hurricane Spin
Michael Mann and Gavin Schmidt
A recent paper by Vecchi and Soden (preprint) published in the journal Geophysical Research Letters has been widely touted in the news (and some egregiously bad editorials), and the blogosphere as suggesting that increased vertical wind shear associated with tropical circulation changes may offset any tendencies for increased hurricane activity in the tropical Atlantic due to warming oceans. Some have even gone so far as to state that this study proves that recent trends in hurricane activity are part of a natural cycle. Most of this is just ‘spin’ (pun intended), but as usual, the real story is a little more nuanced.
[Read more…] about Hurricane Spin
Broad Irony
Michael Mann and Gavin Schmidt
[update 3/20/07: The New York Times has run a short letter from us w/ a link to RealClimate for more info (scroll down to 5th letter; the 2nd letter from James McCarthy of Harvard is quite good too, as are some of the others).]
The first rule when criticizing popular science presentations for inaccuracies should be to double check any ‘facts’ you use. It is rather ironic then that William Broad’s latest piece on Al Gore plays just as loose with them as he accuses Gore of doing.
We criticized William Broad previously (Broadly Misleading) for a piece that misrepresented the scientific understanding of the factors that drive climate change over millions of years, systematically understating the scientifically-established role of greenhouse gases, and over-stating the role of natural factors including those as speculative as cosmic rays (see our recent discussion here). In this piece, Broad attempts to discredit Gore’s “An Inconvenient Truth” by exaggerating the legitimate, but minor, criticisms of his treatment of the science by experts on climate science, and presenting specious or unsubstantiated criticisms by a small number of the usual, well-known contrarians who wouldn’t agree even if Gore read aloud from the latest IPCC report.
[Read more…] about Broad Irony