As previewed last weekend, I spent most of last week at a workshop on Climate Sensitivity hosted by the Max Planck Institute at Schloss Ringberg. It was undoubtedly one of the better workshops I’ve attended – it was focussed, deep and with much new information to digest (some feel for the discussion can be seen from the #ringberg15 tweets). I’ll give a brief overview of my impressions below.
Aerosols
Climate Sensitivity Week
Some of you will be aware that there is a workshop on Climate Sensitivity this week at Schloss Ringberg in southern Germany. The topics to be covered include how sensitivity is defined (and whether it is even meaningful (Spoiler, yes it is)), what it means, how it can be constrained, what the different flavours signify etc. There is an impressive list of attendees with a very diverse range of views on just about everything, and so I am looking forward to very stimulating discussions.
The mystery of the offset chronologies: Tree rings and the volcanic record of the 1st millennium
Guest commentary by Jonny McAneney
Volcanism can have an important impact on climate. When a large volcano erupts it can inject vast amounts of dust and sulphur compounds into the stratosphere, where they alter the radiation balance. While the suspended dust can temporarily block sunlight, the dominant effect in volcanic forcing is the sulphur, which combines with water to form sulphuric acid droplets. These stratospheric aerosols dramatically change the reflectivity, and absorption profile of the upper atmosphere, causing the stratosphere to heat, and the surface to cool; resulting in climatic changes on hemispheric and global scales.
Interrogating tree rings and ice cores
Annually-resolved ice core and tree-ring chronologies provide opportunities for understanding past volcanic forcing and the consequent climatic effects and impacts on human populations. It is common knowledge that you can tell the age of a tree by counting its rings, but it is also interesting to note that the size and physiology of each ring provides information on growing conditions when the ring formed. By constructing long tree ring chronologies, using suitable species of trees, it is possible to reconstruct a precisely-dated annual record of climatic conditions.
Ice cores can provide a similar annual record of the chemical and isotopic composition of the atmosphere, in particular volcanic markers such as layers of volcanic acid and tephra. However, ice cores can suffer from ambiguous layers that introduce errors into the dating of these layers of volcanic acid. To short-circuit this, attempts have been made to identify know historical eruptions within the ice records, such as Öraefajökull (1362) and Vesuvius (AD 79). This can become difficult since the ice chronologies can only be checked by finding and definitively identifying tephra (volcanic glass shards) that can be attributed to these key eruptions; sulphate peaks in the ice are not volcano specific.
Thus, it is fundamentally important to have chronological agreement between historical, tree-ring and ice core chronologies: The ice cores record the magnitude and frequency of volcanic eruptions, with the trees recording the climatic response, and historical records evidencing human responses to these events.
But they don’t quite line up…
[Read more…] about The mystery of the offset chronologies: Tree rings and the volcanic record of the 1st millennium
It never rains but it pause
There has been a veritable deluge of new papers this month related to recent trends in surface temperature. There are analyses of the CMIP5 ensemble, new model runs, analyses of complementary observational data, attempts at reconciliation all the way to commentaries on how the topic has been covered in the media and on twitter. We will attempt to bring the highlights together here. As background, it is worth reading our previous discussions, along with pieces by Simon Donner and Tamino to help put in context what is being discussed here.
The global temperature jigsaw
Since 1998 the global temperature has risen more slowly than before. Given the many explanations for colder temperatures discussed in the media and scientific literature (La Niña, heat uptake of the oceans, arctic data gap, etc.) one could jokingly ask why no new ice age is here yet. This fails to recognize, however, that the various ingredients are small and not simply additive. Here is a small overview and attempt to explain how the different pieces of the puzzle fit together.
Figure 1 The global near-surface temperatures (annual values at the top, decadal means at the bottom) in the three standard data sets HadCRUT4 (black), NOAA (orange) and NASA GISS (light blue). Graph: IPCC 2013. [Read more…] about The global temperature jigsaw
2012 Updates to model-observation comparisons
Time for the 2012 updates!
As has become a habit (2009, 2010, 2011), here is a brief overview and update of some of the most discussed model/observation comparisons, updated to include 2012. I include comparisons of surface temperatures, sea ice and ocean heat content to the CMIP3 and Hansen et al (1988) simulations.
[Read more…] about 2012 Updates to model-observation comparisons
On sensitivity: Part I
Climate sensitivity is a perennial topic here, so the multiple new papers and discussions around the issue, each with different perspectives, are worth discussing. Since this can be a complicated topic, I’ll focus in this post on the credible work being published. There’ll be a second part from Karen Shell, and in a follow-on post I’ll comment on some of the recent games being played in and around the Wall Street Journal op-ed pages.
Some AGU highlights
Here a few of the videos of the named lectures from last week that are worth watching. There are loads more videos from selected sessions on the AGU Virtual Meeting site (the AGU YouTube channel has quite a lot more from past meetings too).
All well worth the time.
The CERN/CLOUD results are surprisingly interesting…
The long-awaited first paper from the CERN/CLOUD project has just been published in Nature. The paper, by Kirkby et al, describes changes in aerosol nucleation as a function of increasing sulphates, ammonia and ionisation in the CERN-based ‘CLOUD’ chamber. Perhaps surprisingly, the key innovation in this experimental set up is not the presence of the controllable ionisation source (from the Proton Synchrotron accelerator), but rather the state-of-the-art instrumentation of the chamber that has allowed them to see in unprecedented detail what is going on in the aerosol nucleation process (this is according to a couple of aerosol people I’ve spoken about this with).
This paper is actually remarkably free of the over-the-top spin that has accompanied previous papers, and that bodes very well for making actual scientific progress on this topic.
[Read more…] about The CERN/CLOUD results are surprisingly interesting…
Glory (not to) be
This morning one of the most important (and most delayed) satellite launches in ages took place. The mission was to launch the Glory satellite into a polar orbit, where three key instruments would have been looking at solar irradiance, aerosols and clouds. Unfortunately, one of the stages failed to separate and the satellite did not make orbit.
The irradiance measurements were to be an important continuation of the SORCE mission results, and are needed to stably continue the Total Solar Irradiance (TSI) timeseries. However the big new measurements were those associated with the Aerosol Polarimeter Sensor (APS). A similar instrument has flown in space twice before (the French-developed POLDER instrument), but unfortunately only for short periods. Its uniqueness lies in its ability to detect aerosols over bright surfaces (like land), and more importantly, to distinguish what kind of aerosols it is seeing. (Update: There is a third POLDER instrument, PARASOL, that is currently in orbit, see comments).
It may seem surprising, but despite many different attempts, almost all remote sensing of aerosols from space is only capable of detecting the total optical depth of all aerosols. MISR can provide some discrimination in special cases (picking out dust via a retrieval of non-spherical particles, or using the single scattering albedo to distinguish black carbon), but overall the estimates mix up sulphates, dust, black carbon, sea salt, nitrates and secondary organics. These originate from different processes, have different properties and different impacts on both radiation and clouds. Sea salt comes from sea spray over the oceans, dust from dry desert areas, black carbon from burning of forests and fossil fuels, sulphates derive from ocean plankton and burning coal, nitrates derive from fertiliser use, car exhausts and lightning, and secondary organics come from the stew of volatile organic compounds from industrial and natural sources alike. There are also pollen, and fat particles from outdoor cooking etc.
Because we can’t easily distinguish what’s what from space, we don’t have good global coverage of exactly how much of the aerosol is anthropogenic, and how much is natural. That uncertainty is a big player in the overall uncertainty in the human caused aerosol radiative forcing. Similarly, we have not been able to tell how much of the aerosol is capable of interacting with liquid or ice clouds (which depends on the different aerosols’ affinity for water), and that impacts our assessment of the aerosol indirect effect. These uncertainties are reflected in the model simulations of aerosol concentrations which all show similar total amounts, but have very different partitions among the different types.
The APS technology is a big step forward on these issues. It turns out that while the reflected SW from many different aerosols is similar, the polarisation of that reflected light depends quite strongly on what kind of aerosol it is. This varies depending on the angle at which the light is shining, So by scanning through the angles and measuring the polarisation, we can get a better constraint on the distribution of key aerosols. Scientists have already been working with aircraft mounted versions of the instrument, and this will continue.
The story of how this launch actually happened is very long and twisted, and needless to say, has taken far longer than anyone envisaged at the start (over a decade ago). With the failure to make orbit this morning, the wait will unfortunately go on.
This is of course a huge setback for the mission team (many of whom I know), and I can only imagine how frustrating this must be. The loss of OCO two years ago was due to a similar problem, though 3 launches since then have been successful (and the same system is being replicated as OCO-2). With the postponement of CLARREO in the proposed 2012 budget, there is a huge hole building in the US contribution to Earth and Sun observing systems.
Working from space is hard, expensive and risky. We cannot take it for granted, and yet we need that information more than ever.