It won’t have escaped many of our readers’ notice that there has been what can only be described as a media frenzy (mostly in the UK) with regards to climate change in recent weeks. The coverage has contained more bad reporting, misrepresentation and confusion on the subject than we have seen in such a short time anywhere. While the UK newspaper scene is uniquely competitive (especially compared to the US with over half a dozen national dailies selling in the same market), and historically there have been equally frenzied bouts of mis-reporting in the past on topics as diverse as pit bulls, vaccines and child abductions, there is something new in this mess that is worth discussing. And that has been a huge shift in the Overton window for climate change.
[Read more…] about Whatevergate
Archives for 2010
Daily Mangle
Yesterday, the Daily Mail of the UK published a predictably inaccurate article entitled “Climategate U-turn as scientist at centre of row admits: There has been no global warming since 1995”.
The title itself is a distortion of what Jones actually said in an interview with the BBC. What Jones actually said is that, while the globe has nominally warmed since 1995, it is difficult to establish the statistical significance of that warming given the short nature of the time interval (1995-present) involved. The warming trend consequently doesn’t quite achieve statistical significance. But it is extremely difficult to establish a statistically significant trend over a time interval as short as 15 years–a point we have made countless times at RealClimate. It is also worth noting that the CRU record indicates slightly less warming than other global temperature estimates such as the GISS record.
The article also incorrectly equates instrumental surface temperature data that Jones and CRU have assembled to estimate the modern surface temperature trends with paleoclimate data used to estimate temperatures in past centuries, falsely asserting that the former “has been used to produce the ‘hockey stick graph’”.
Finally, the article intentionally distorts comments that Jones made about the so-called “Medieval Warm Period”. Jones stated in his BBC interview that “There is much debate over whether the Medieval Warm Period was global in extent or not. The MWP is most clearly expressed in parts of North America, the North Atlantic and Europe and parts of Asia” and that “For it to be global in extent, the MWP would need to be seen clearly in more records from the tropical regions and the Southern hemisphere. There are very few palaeoclimatic records for these latter two regions.”
These are statements with which we entirely agree, and they are moreover fully consistent with the conclusions of the most recent IPCC report, and the numerous peer-reviewed publications on this issue since. Those conclusions are that recent Northern Hemisphere warming is likely unprecedented in at least a millennium (at least 1300 years, in fact), and that evidence in the Southern Hemisphere is currently too sparse for confident conclusions. Mann et al in fact drew those same conclusions in their most recent work on this problem (PNAS, 2008).
Unfortunately, these kinds of distortions are all too common in the press nowadays and so we must all be prepared to respond to those journalists and editors who confuse the public with such inaccuracies.
Update 2/16/10. Phil Jones has confirmed to us that our interpretations of his comments in the BBC interview are indeed the correct ones, and that he agrees with the statements in our piece above. He and his CRU colleagues have also put up an response to some of the false allegations in a previous piece in the UK Guardian. We’ll report further such developments as they happen.
IPCC errors: facts and spin
Currently, a few errors –and supposed errors– in the last IPCC report (“AR4”) are making the media rounds – together with a lot of distortion and professional spin by parties interested in discrediting climate science. Time for us to sort the wheat from the chaff: which of these putative errors are real, and which not? And what does it all mean, for the IPCC in particular, and for climate science more broadly?
Good news for the earth’s climate system?
Guest Commentary by Jim Bouldin (UC Davis)
How much additional carbon dioxide will be released to, or removed from, the atmosphere, by the oceans and the biosphere in response to global warming over the next century? That is an important question, and David Frank and his Swiss coworkers at WSL have just published an interesting new approach to answering it. They empirically estimate the distribution of gamma, the temperature-induced carbon dioxide feedback to the climate system, given the current state of the knowledge of reconstructed temperature, and carbon dioxide concentration, over the last millennium. It is a macro-scale approach to constraining this parameter; it does not attempt to refine our knowledge about carbon dioxide flux pathways, rates or mechanisms. Regardless of general approach or specific results, I like studies like this. They bring together results from actually or potentially disparate data inputs and methods, which can be hard to keep track of, into a systematic framework. By organizing, they help to clarify, and for that there is much to be said.
[Read more…] about Good news for the earth’s climate system?
The wisdom of Solomon
A quick post for commentary on the new Solomon et al paper in Science express. We’ll try and get around to discussing this over the weekend, but in the meantime I’ve moved some comments over. There is some commentary on this at DotEarth, and some media reports on the story – some good, some not so good. It seems like a topic that is ripe for confusion, and so here are a few quick clarifications that are worth making.
First of all, this is a paper about internal variability of the climate system in the last decade, not on additional factors that drive climate. Second, this is a discussion about stratospheric water vapour (10 to 15 km above the surface), not water vapour in general. Stratospheric water vapour comes from two sources – the uplift of tropospheric water through the very cold tropical tropopause (both as vapour and as condensate), and the oxidation of methane in the upper stratosphere (CH4+2O2 –> CO2 + 2H2O NB: this is just a schematic, the actual chemical pathways are more complicated). There isn’t very much of it (between 3 and 6 ppmv), and so small changes (~0.5 ppmv) are noticeable.
The decreases seen in this study are in the lower stratosphere and are likely dominated by a change in the flux of water through the tropopause. A change in stratospheric water vapour because of the increase in methane over the industrial period would be a forcing of the climate (and is one of the indirect effects of methane we discussed last year), but a change in the tropopause flux is a response to other factors in the climate system. These might include El Nino/La Nina events, increases in Asian aerosols, or solar impacts on near-tropopause ozone – but this is not addressed in the paper and will take a little more work to figure out.
Update: This last paragraph was probably not as clear as it should be. If the lower stratospheric water vapour (LSWV) is relaxing back to some norm after the 1997/1998 El Nino, then what we are seeing would be internal variability in the system which might have some implications for feedbacks to increasing GHGs, and my estimate of that would be that this would be an amplifying feedback (warmer SSTs leading to more LSWV). If we are seeing changes to the tropopause temperatures as an indirect impact from increased Asian aerosol emissions or solar-driven ozone changes, then this might be better thought of as impacting the efficacy of those forcings rather than implying some sensitivity change.
The study includes an estimate of the effect of the observed stratospheric water decadal decrease by calculating the radiation flux with and without the change, and comparing this to the increase in CO2 forcing over the same period. This implicitly assumes that the change can be regarded as a forcing. However, whether that is an appropriate calculation or not needs some careful consideration. Finally, no-one has yet looked at whether climate models (which have plenty of decadal variability too) have phenomena that resemble these observations that might provide some insight into the causes.
The IPCC is not infallible (shock!)
Like all human endeavours, the IPCC is not perfect. Despite the enormous efforts devoted to producing its reports with the multiple levels of peer review, some errors will sneak through. Most of these will be minor and inconsequential, but sometimes they might be more substantive. As many people are aware (and as John Nieslen-Gammon outlined in a post last month and Rick Piltz goes over today), there is a statement in the second volume of the IPCC (WG2), concerning the rate at which Himalayan glaciers are receding that is not correct and not properly referenced.
2009 temperatures by Jim Hansen
This is Hansen et al’s end of year summary for 2009 (with a couple of minor edits). Update: A final version of this text is available here.
If It’s That Warm, How Come It’s So Damned Cold?
by James Hansen, Reto Ruedy, Makiko Sato, and Ken Lo
The past year, 2009, tied as the second warmest year in the 130 years of global instrumental temperature records, in the surface temperature analysis of the NASA Goddard Institute for Space Studies (GISS). The Southern Hemisphere set a record as the warmest year for that half of the world. Global mean temperature, as shown in Figure 1a, was 0.57°C (1.0°F) warmer than climatology (the 1951-1980 base period). Southern Hemisphere mean temperature, as shown in Figure 1b, was 0.49°C (0.88°F) warmer than in the period of climatology.
Figure 1. (a) GISS analysis of global surface temperature change. Green vertical bar is estimated 95 percent confidence range (two standard deviations) for annual temperature change. (b) Hemispheric temperature change in GISS analysis. (Base period is 1951-1980. This base period is fixed consistently in GISS temperature analysis papers – see References. Base period 1961-1990 is used for comparison with published HadCRUT analyses in Figures 3 and 4.)
The global record warm year, in the period of near-global instrumental measurements (since the late 1800s), was 2005. Sometimes it is asserted that 1998 was the warmest year. The origin of this confusion is discussed below. There is a high degree of interannual (year‐to‐year) and decadal variability in both global and hemispheric temperatures. Underlying this variability, however, is a long‐term warming trend that has become strong and persistent over the past three decades. The long‐term trends are more apparent when temperature is averaged over several years. The 60‐month (5‐year) and 132 month (11‐year) running mean temperatures are shown in Figure 2 for the globe and the hemispheres. The 5‐year mean is sufficient to reduce the effect of the El Niño – La Niña cycles of tropical climate. The 11‐year mean minimizes the effect of solar variability – the brightness of the sun varies by a measurable amount over the sunspot cycle, which is typically of 10‐12 year duration.
Plass and the Surface Budget Fallacy
RealClimate is run by a rather loosely organized volunteer consortium of people with day jobs that in and of themselves can be quite consuming of attention. And so it came to pass that the first I learned about Gavin’s interest in the work of Plass was — by reading RealClimate! In fact, David Archer and I have a book due to appear this year from Wiley/Blackwell (The Warming Papers), which is a collection of historic papers on global warming, together with interpretive essays by David and myself. Needless to say, we pay a lot of attention to the seminal work by Plass in this book. His 1956 QJRMS technical paper on radiative transfer, which is largely the basis of his more popular writings on global warming, was one of the papers we chose to reprint in our collection. In reading historic papers, it is easy to fall into the trap of assuming that investigators of the past are working on the basis of the same underlying set of assumptions in common use today. Through a very close reading of the paper, David and I noticed something about the way Plass estimated surface temperature increase, that Gavin and all previous commentators on Plass — including Kaplan himself — seem to have overlooked.
L&C, GRL, comments on peer review and peer-reviewed comments
I said on Friday that I didn’t think that Lindzen and Choi (2009) was obviously nonsense. Well, a number of people have disagreed with me, and in doing so, have presented some of the back story on the how the response was handled. I think this deserves to be more widely known in the hope that it will generate some discussion in the community for how such situations might be dealt with in the future.
[Read more…] about L&C, GRL, comments on peer review and peer-reviewed comments
First published response to Lindzen and Choi
The first published response to Lindzen and Choi (2009) (LC09) has just appeared “in press” (subscription) at GRL. LC09 purported to determine climate sensitivity by examining the response of radiative fluxes at the Top-of-the-Atmosphere (TOA) to ocean temperature changes in the tropics. Their conclusion was that sensitivity was very small, in obvious contradiction to the models.
In their commentary, Trenberth, Fasullo, O’Dell and Wong examine some of the assumptions that were used in LC09’s analysis. In their guest commentary, they go over some of the technical details, and conclude, somewhat forcefully, that the LC09 results were not robust and do not provide any insight into the magnitudes of climate feedbacks.
Coincidentally, there is a related paper (Chung, Yeomans and Soden) also in press (sub. req.) at GRL which also compares the feedbacks in the models to the satellite radiative flux measurements and also comes to the conclusion that the models aren’t doing that badly. They conclude that
In spite of well-known biases of tropospheric temperature and humidity in climate models, comparisons indicate that the intermodel range in the rate of clear-sky radiative damping are small despite large intermodel variability in the mean clear-sky OLR. Moreover, the model-simulated rates of radiative damping are consistent with those obtained from satellite observations and are indicative of a strong positive correlation between temperature and water vapor variations over a broad range of spatiotemporal scales.
It will take a little time to assess the issues that have been raised (and these papers are unlikely to be the last word), but it is worth making a couple of points about the process. First off, LC09 was not a nonsense paper – that is, it didn’t have completely obvious flaws that should have been caught by peer review (unlike say, McLean et al, 2009 or Douglass et al, 2008). Even if it now turns out that the analysis was not robust, it was not that the analysis was not worth trying, and the work being done to re-examine these questions is a useful contributions to the literature – even if the conclusion is that this approach to the analysis is flawed.
More generally, this episode underlines the danger in reading too much into single papers. For papers that appear to go against the mainstream (in either direction), the likelihood is that the conclusions will not stand up for long, but sometimes it takes a while for this to be clear. Research at the cutting edge – where you are pushing the limits of the data or the theory – is like that. If the answers were obvious, we wouldn’t need to do research.
Update: More commentary at DotEarth including a response from Lindzen.