Here’s an open thread for various climate science related discussions, to prevent more off-topic clutter everywhere else. We have some good posts coming up, but if you want to discuss something you read in the media, saw in a press release or just wanted to ask about, this is the time.
Some interesting things we’ve seen recently include discussions on the epistimology of climate modelling, Andy Dessler’s adventures in debate land and his new paper on water vapour trends, and a review of trends in the Columbia glacier. Have at it.
Addendum: Kevin McKinney has beaten us to the mention of this, but another recent article of importance is a thorough review of the state of knowledge of drought, past and future, by Dai. The article is open access here.
Nick Gotts says
Dan H.,
No, a projected increase in atmospheric water vapour and precipitation does not contradict a projected increase in droughts. Here’s the start of the paper, which is freely downloadable (follow the links from Kevin’s comment):
“Drought is a recurring extreme climate event
over land characterized by below-normal
precipitation over a period of months to years.
Drought is a temporary dry period, in contrast to
the permanent aridity in arid areas. Drought occurs
over most parts of the world, even in wet and humid
regions. This is because drought is defined as a dry
spell relative to its local normal condition.”
Increased temperatures will increase the “atmospheric demand” for water vapour, increasing the amount of evaporation (this will be particularly marked over land, as land will heat up more than the ocean). This increase could outweigh an increase in precipitation. Moreover, despite what you say about earth history, the period of rapid warming since 1950 appears in fact to have coincided with a reduction in precipitation over large parts of the globe’s land surface.
flxible says
Vince @42 – Winds Slowing Around the World, Study Suggests
Todd Albert says
I am currently teaching an Honors-level class “Global Warming: Myths and Facts”. The students are an impressive group and apparently did not know the topic or title of the course until they went to buy their books.
Some were EXTREMELY SKEPTICAL the first day of class. Once they delved into the literature, their skepticism shifted from the science to the deniosphere.
Together, we are reading 4 books…
Kolbert’s “Field Notes from a Catastrophe”
Archer’s “The Long Thaw”
Hoggan’s “Climate Cover-Up”
Dyer’s “Climate Wars”
(I figured that this would give them 4 very different looks at the topic)
…and they each present an article every week from a peer-reviewed journal related to the course. I told them that I would give anyone an instant A if they could find a peer-reviewed article that refuted the science of ACC (anthropogenic climate change) that hadn’t itself also been refuted. I also told them not to believe a word that I tell them and to look in the literature for themselves. It’s working like a charm.
They’re each also doing their own literature reviews on a variety of topics. Boy are they productive!
We haven’t started “Climate Wars” yet, but I just wanted to let the RC-heros know that Archer’s book is so-far the hands-down favorite and I plan to use it again in several courses in the future. Perhaps I can write a review some time.
Those who haven’t read “The Long Thaw” should do so at their earliest convenience. It lays out the science in a very digestible and clear way.
Dan H. says
Gavin and Nick,
I fully understand the concept of droughts and their predictions for the 21st century. I was countering the UCAR study which predicted ~3/4 of the globe would experience severe drought conditions in 2090-2099. Also, the rapid warming since 1980 (not 1950) has not conincided with reduced precipitation over large parts of the globe. The recent (~30 years) droughts pale in coparision with those earlier in the century and in prior centuries. As I mentioned earlier, scientific studies have found that drought conditions are more closely tied to ENSO measurements than atospheric temperatures. If global warming were to affect ENSO conditions, then I will concede my point. Also, I do not need your condenscending attitude Gavin about learning.
Eyal Morag says
1st TimTheToolMan say
“If the models were to be shown to be specifically deficient in some area and need significant rework ”
If the models will shown to be specifically deficient in some area and need significant rework I’m sure Gavin will put a post in RealClimate abut it. Mean time we have to use what we have and make rational decisions
2nd There are election in the US and citizens should do their part by: voting, put signs, comment in the media on the good and bad guys, drag their neighbor to vote …. The world need You!
Fred Moolten says
To Magnus (#25) – The claim that excess CO2 remains in the atmosphere for only a few years is one of those enduring myths that persist in the blogosphere despite the very substantial evidence that it is false. Essenhigh’s paper would never have made it into a reputable climatology, geophysics, or general science journal.
It’s important to distinguish between CO2 “residence time” (RT) and the time required for elevated CO2 levels to decline toward baseline levels. Individual CO2 molecules (including C14 tracers) exchange rapidly between the atmosphere and oceanic or terrestrial reservoirs, with an atmospheric RT of about 5 years, as Essenhigh states, but the exit of CO2 molecules from the atmosphere is almost completely balanced over such a short interval by entrance into the atmosphere from one of the other sources. With anthropogenic emissions, the imbalance is even in the other direction – i.e., net increase into the atmosphere.
If one looks at the actual intervals needed for an atmospheric excess to subside, their duration is orders of magnitude longer, and can’t be characterized by a single “half-life” because the decay is composed of multiple exponential or quasi-exponential functions. On a short time-scale (a decade or two), CO2 equilibrates with the upper mixed layer of the ocean in the sense that an equilibrium is approached involving the dissolving of CO2 gas as a function of its partial pressure, conversion to H2CO3, and equilibration between bicarbonate (HCO3-) carbonate (CO3–) and H+ ions. However, equilibration over the entire depths of the ocean requires centuries. This is not the end of the story. The above equilibria respond to added CO2 via a reduction in carbonate (to take up the extra hydrogen ions), and this buffering capacity of carbonate is restored through the dissolution of CaCO3 in marine sediments to provide the needed carbonate ions. This process consumes millennia. The final stage – restoration of CaCO3 stores (the form that completes the carbon cycle via subduction into the Earth’s interior via subduction zones) requires the “weathering” of terrestrial silicate rocks via H2CO3 in rainwater, so that the resulting bicarbonate can flow to the sea. This process can be simulated in laboratory experiments and asssessed via changes in rocks over millions of years of geologic time. Its decay curve involves hundreds of thousands of years, leading to the assertion (for this part of the cycle) that essentially, “CO2 is forever”.
A useful link is to David Archer’s discussion at CO2 Lifetime
Rocco says
Steven T. Corneliussen: There is some discussion here.
Hank Roberts says
For Jerry Tolman:
http://scholar.google.com/scholar?hl=en&q=%22Solar+chimney%22&as_sdt=2001&as_ylo=2010&as_vis=1
You should also look at the whole of the discussion Gavin pointed to a few responses back — the idea of overthrowing physics excites people, doesn’t it?
http://www.atmos-chem-phys-discuss.net/8/17423/2008/acpd-8-17423-2008-discussion.html
Lionel A Smith says
Todd Albert #50
David Archer’s ‘Global Warming: Understanding the Forecast’ is also worth a look as is ‘Climate Change: A Multidisciplinary Approach’ by William James Burroughs. I hope to soon see an updated edition which could cover the GCR issue in more detail although the current edition does point out flaws in Svensmark’s assessment.
Bob (Sphaerica) says
41 (Dan H.),
And yet, from the article (really, the crux of the article…), in the sixth paragraph:
And then in the very next paragraph (emphasis mine):
Of course, the eight is a completely made up figure, and the five is near the high end of a range of several dozen projections, so he’s purposely exaggerating things to make his case seem more plausible. He should have just said “3.”
But there’s no question that the article says “one” and ridicules anything higher than that, and you are defending the article, whether or not you actually understood or remembered what was written.
Gavin didn’t answer this in any detail, so very briefly, the known forcings which are believed to initiate the ice ages are themselves relatively small, or at least, insufficient to cause the observed temperature changes. This means that there must be positive feedbacks in the system to amplify those forcings.
Basically, the argument that climate sensitivity is low and that the climate of the earth is very stable requires that the history of the planet have a steady, unchanging climate… something that is clearly not the case. You can’t just say “well, yeah, but that was then, the thing is, the climate is really, really stable now.”
Low sensitivity = no ice ages.
Didactylos says
Dan H. said: “there is a difference between those who “deny” global warming, and those to refer to themselves as “skeptics.””
Can you spot the problem? You should be able to!
The problem is that nearly all people who deny global warming will refer to themselves as sceptics (or skeptics, if they prefer American English). Yes, there are some sceptics who do not deny global warming, and there are some deniers who do not call themselves sceptics – but the overlap is enormous.
bella says
Regarding the stilling paper fresh out on Nature Geoscience (Vautard et al http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo979.html) I was wondering if anyone would care to comment on the implications for water vapour in the lower atmosphere? I’m thinking lower wind speed over terrestrial ecosystems -> less evapotranspiration -> less water in the air above the canopy -> implications for the radiative forcing? As it was suggested that the reduction in wind speed partly could be attributed to an increased surface roughness following the increased net primary production from CO2 fertilization, I was wondering whether mechanisms like this are at all included in the GSMs, or if this is on a different scale? In case it is included, are the models predicting reduced wind speed over land? And finally, connected to my thoughts on water vapour above canopy, would a possible down regulation in modelled net primary production following an inclusion of a nitrogen (and phosphorus) constrain on modelled primary production as suggested by Wang and Houlton last year http://www.agu.org/journals/ABS/2009/2009GL041009.shtml) have any significance at all for the surface roughness and the amount of water vapour above canopy as modelled from evapotranspiration and depending on wind speed?
Tom Fid says
Re 14,
“Try running a multivariate regression between Temperature (Y) with CO2 and the AMO (x-variables).
The predicted values versus the actual temperature values are pretty shocking and obviously flawed somewhere…”
The principal flaw is in the approach above. Temperature is the accumulation of heat from the radiative forcing of CO2 and other things. In otherwords, temperature is the integral of the forcing, not a linear function of the forcings themselves. Therefore a simple regression is not going to work, even setting aside other issues, like omission of confounding forcings from aerosols.
Fred Moolten says
It’s frustrating to refer back to a previous comment by number (e.g. Magnus at #25) only to find that new comments have been interpolated and the original number has changed (currently Magnus is at #27). I’m not sure why comments need to be inserted out of order, but perhaps they should be identified separately (e.g., 20A, 20B, etc., or simply numbered according the order in which they were actually posted).
caerbannog says
Probably a bit OT even for an “unforced variations” thread, but what the heck. Here’s a little anecdote that illustrates the utter insanity that permeates the global-warming denial movement.
Last month, I went out to Denver (from Southern California) to visit relatives there. While I was visiting family in Denver, a heat-wave struck Southern California and downtown LA experienced an all-time high of 113F.
A couple of days later, when my mom was waiting in a supermarket checkout line, the man behind her mentioned the how nice and warm it had been in Denver (mid-high 80’s at the end of September). My mom replied that her son from Southern California was in town and was fortunate to miss the 110+ F heat-wave there.
Well, the man just went off on her — shouting and ranting about the “global-warming fraud”, Al Gore, the UN, blah, blah, blah. He continued to rant and yell at her as she pushed her grocery cart out of the market! It was just nuts.
And that’s why Ken Buck will likely become Colorado’s next junior senator.
Rod B says
Hank, it is not at all clear how organic farming per se improves the soil erosion problem.
re the new farm land from cutting down forests thing — what has that to do with anything I said?
[OT, moved]
CM says
Dan H. #11,
> Prof. Latif has postulated …
No, he hasn’t. It’s a canard. See:
http://deepclimate.org/2010/01/11/mojib-latif-slams-daily-mail/
aphillips says
What about the weak early solar paradox, or whatever it’s called? Lindzen mentioned this. Apparently, the sun was something like 25% weaker, but the earth was not frozen, and therefore climate sensitivity is weak. What’s the story on that?
Bob (Sphaerica) says
54 (Dan H),
I think you are guilty of a rather bizarre over-application of Occam’s Razor in expecting a single system (ENSO) to be a totally dominant factor in water distribution around the planet. It’s not a very skeptical, or open-minded, approach.
I’m certainly no expert, but Hadley Cells offer an excellent example. In a nutshell (and please, I’ll eagerly accept correction from my betters) this is a constant and rather stable circulation of air rising in the (moist) tropics (near the equator), moving poleward, and descending further from the equator.
What this does is to move moisture from the tropics to the temperate zones, and at the same time to deprive the subtropics of moisture. This is why most of the world’s deserts and otherwise arid regions exist in those latitudes.
The best map I found to visually present this (in a very quick web search) is here: Climate Zone Map
Climate change is expected to expand the size of the Hadley Cells, and I think the mechanics of how that might happen are fairly intuitive (if not, see the links at the end). It can clearly be understood that were this to occur, the deserts of the world (i.e. the arid regions in the hearts of the cells) would expand.
A quick google search finds a wealth of information of all sorts, from Wikipedia to research papers:
References
Dan H. says
Bob,
The Frobes article did not say that the total climate sensitivity was 1, but rather 1 degree of warming can be directly attributed to the CO2 molecules themselves. This value is usually quoted as between 1.0 and 1.2, and referred to as the no-feedback forcing (see Gavin’s other article on feedback for a further explanation). Warren Meyer then goes on to emphasize that the differences between the skeptics and alarmists is the warming attributed to feedbacks, and mentions that these values are less well supported. I am defending the article only in the sense that Warren Meyer is highlighting the differences between skeptics and alarmists. You may choose to draw the line between the two elseware, but I feel that he has make a fairly good portrayal of the differences. Btw, I have seen claims of up to 10C/doubling of CO2, so his figures, while seemingly tossed about randomly, are not completely made up. You may want to reconsider your statement about understanding or remembering.
Just because the “known” forcings of ice ages are relatively small, does not necessitate the need for large positive feedback. How many “unknown” forcing could be responsible. I agree that the Earth’s climate has never been “stable.” The relative stability during this recent interglacial has been interspersed with many warming and cooling, wet and dry periods. One example in the research has shown North Africa to be both significantly wetter and drier than at present since the end of the last ice age.
Gail Zawacki says
I would be interested in what people think of this study just released (http://www.sciencedaily.com/releases/2010/10/101021152401.htm)
“Vegetation plays an unexpectedly large role in cleansing the atmosphere, a new study finds.
“Our results show that plants can actually adjust their metabolism and increase their uptake of atmospheric chemicals as a response to various types of stress,” says Chhandak Basu of the University of Northern Colorado, a co-author.
“This complex metabolic process within plants has the side effect of cleansing our atmosphere.”
“Once they understood the extent to which plants absorb oVOCs, the research team fed the information into a computer model that simulates chemicals in the atmosphere worldwide.”
“The results indicated that, on a global level, plants are taking in 36 percent more oVOCs than had previously been accounted for in studies of atmospheric chemistry.
Additionally, since plants are directly removing the oVOCs, fewer of the compounds are evolving into aerosols.”
“This really transforms our understanding of some fundamental processes taking place in our atmosphere,” Karl says.”
What do you suppose it does to the plants?
[OT, moved]
Jim Bullis, Miastrada Company says
More needs to be said about water and trees on a massive scale, and the need to balance long standing environmental positions with relatively new challenges from CO2. I also want to discuss more about salt water, which I tend to think fails to meet the cost requirements for a truly large scale project, and it also brings limits on what can be grown.
However, respecting Gavin’s attempts to keep order in discussions, I hope others would move the forest discussion to the latest open thread, ‘unforced variations 3’.
I got into the water and trees topic as a thin thread, since it was what I called a feedback with humans as part of the loop.
I also jumped into water and trees to try to suggest that it would be better to not get too upset over the Cuccinelli thing; and instead get on with discussing real possible solutions.
These seemed to be timely discussions, and I appreciate RC attempts to provide a more open thread post. That was a good way to handle things.
Thanks.
Bob (Sphaerica) says
69 (Dan H),
It most certainly did, and I quoted the passages. How stupid do you think people are?
And there is, laughably, no real distinction, as evidenced by the content of the article, which claims there is a difference, and yet goes on to itemize almost every ridiculous denial canard in history. Your inability to see this is part of your own denial. Don’t expect others to buy into it.
You and all of the deniers, and yet the rest of us find it to be utterly ridiculous.
I’m sure that you can find someone somewhere who said 100C. First of all, you and he are choosing end points in ranges. Secondly, you can find someone somewhere who said anything. So what? It’s also dependent on how much CO2. Are you talking about a scenario where we burn every ounce of fossil fuels available in the earth?
Don’t throw around “I heard…” That’s nonsense. Provide a citation to such a statement made by a climate scientist, as their median prediction, and show that it was well received by the climate science community. Anything less than that is you just making stuff up to suit the needs of your current position in an argument. It’s a waste of time.
Another constant denial tactic. “We don’t know” or “we can’t know” or “but what if it’s the Flying Spaghetti Monster that’s behind it all, how can you be sure?”
The information has been presented to you. Study it and learn instead of just making things up and hoping something sticks.
Dan H. says
CM,
Prof. Latif’s report is not a lie. His report in 2008, and presentation in 2009 point to cooling between now and sometimes in the 2030s similar to that observed from the 1950s to aobut 1980. I am not talking about some global chill, but a slight decrease in global temperatures. He is not the only one, several others are using AMO/PDO data, and arriving at similar results. Your link also mentions that Prof. Latif believes that global warming is occurring, but that up to half of the observed warming was due to these oceanic oscillations. This is belief shared by many oceanographers, but not necessarily by other climate scientists.
Erik Ryberg says
I know this is not a blog for the masses, but could I humbly make a request for a *just slightly* more approachable editorial style?
An example: take a look at the “Solar Spectral Stumper” article below. The title is a teaser: “there’s a confusing thing here.” The first sentence is also: “this is puzzling.” Along with scepticism: “big if.” Then identification of “the case in question.” Then a look at what they did that does not reveal what they found that was so puzzling. Then a description of what they did. And so on. It isn’t until the third paragraph that the “stumper” is explained, and by then it doesn’t make any sense because I’ve given up having the particular background to make heads or tails of it. But I suspect heads and tails both could have been made for me by the writer.
Maybe try to come out and explain in lay-person’s language in the first sentence what is so puzzling and why it may be so important.
Respectfully,
EBR
Bob (Sphaerica) says
72 (Dan H),
I mistyped (in my frothing hysteria)…
…because I thought what you were saying was that there was a distinction between deniers and skeptics, which there is not… they’re the same animal.
As far as a distinction between deniers and people who intelligently learn and understand the information, and use rational reasoning to arrive at logical conclusions, rather than latching onto any piece of rotten, half-floating driftwood they can to avoid being forced to face an unpleasant reality… well, that’s just silly. No one needs a lesson in that. It’s pretty obvious to everyone.
CM says
Gavin,
re: epistemology of climate modeling, that looks like an interesting collection with something for everyone.
I am of course curious whether you recognize Andrew Lacis and yourself as doing “postmodern, playful, superficial, extreme” science, as per Sundberg’s sociological take on Snowball Earth simulations.
:)
More seriously, do you have any thoughts to share on Parker’s criticism of probabilistic interpretations of model ensembles? From the argument:
[Response: Wendy generally knows what she is talking about, though I would quibble that ‘initial condition’ uncertainty isn’t assessed properly. That is done better than perturbed physics uncertainty for instance. Her point that the ensembles are ensembles of opportunity, not design is completely correct. – gavin]
dhogaza says
CM didn’t say the report is a lie, Dan H. He said that misrepresentations by the denialsphere are lies.
Bob (Sphaerica) says
73 (Dan H),
No one said his paper was a lie. What they said was that the report about the contents of his paper, and what he said in his presentation, was a lie. The report actually says, in the extract:
How can you repeatedly get all of this stuff so very wrong, and not realize that you are listening to and believing the wrong sources, and that you need to be more skeptical, open your eyes, and learn a whole lot more without trusting the Watts and the Novas and the Meyers of the world?
Please take the time to actually read this about the Latif episode.
And start being a whole lot more skeptical about what you choose to believe, versus what should be believed.
Maya says
Dan, personally, I’m not going to bet against the RC folks, and they’re betting against a cooling period:
https://www.realclimate.org/index.php/archives/2008/05/global-cooling-wanna-bet/
https://www.realclimate.org/index.php/archives/2008/05/the-global-cooling-bet-part-2/
Steven T. Corneliussen says
Re the reply by “Rocco” in 57 to my Wikipedia-related query in 43: Thanks for the link. But isn’t that a discussion by William Connolley himself, the former RC scientist who is at the center of the Wikipedia squabble in question? And isn’t it written only for people who have followed the controversy closely, and who know the background, context and lingo? Let me re-phrase my original question: The WSJ opinion editors have been crowing about something involving Wikipedia and a former RC scientist. When the WSJ editors crow, I get suspicious. In this case, it seems important, if you agree that Wikipedia’s handling of science is important. So I’m hoping for two things:
* for someone (like a New York Times reporter, or for that matter a WSJ reporter, since they don’t work for the WSJ opinion editors) to explain in simple terms what it’s all about, and
* for RC scientists to say what RC’s take is.
Thanks.
[Response: Wikipedia is a world unto itself, and the decisions it makes in adminstrating itself are frequently very difficult to make sense of. As far I can perceive, there was a lot of infighting among editors on a set of climate change articles (usually these are because the contrarians keep trying to add unsourced and/or irrelevant material), and normal modes of resolution did not appear to work, and so they have banned everyone involved for a short period. A ‘scorched earth’ policy if you like. This has affected very sensible people (like William) and nutters alike. I don’t think this is a very sensible way to run things, but it’s not my encyclopedia. If this means anything, it means that more informed people need to get involved in Wikipedia and learn its ways so that the standards can be maintained. What the WSJ would like is for the science descriptions to be diluted with standard skeptic tripe so that people will not be easily able to check that the WSJ opinion writers are making things up ( which they do with regularity). – gavin]
Chris S. says
A new citizen science climate initiative worth a look:
http://www.oldweather.org/
Septic Matthew says
Here is Ryan Maue’s web page again, with updated tropical cyclone energy summary statistics:
http://www.coaps.fsu.edu/~maue/tropical/
My question: does AGW (GCMs or other models) actually make any predictions about frequencies of large storms or changes in total energy expenditures?
Septic Matthew says
Just to clarify my question, I don’t think there is any prediction from AGW concerning tropical cyclones: water will be warmer, air will be warmer, there will be more total moisture in the air, and the air-land difference will be greater creating greater winds. If total rainfall is less over land, then it may also be less over water. I have not yet found a clear exposition of what, for example, GCMs may predict.
MKT says
@2
Regarding the AMO and trends, one point of the paper is that the contribution of internal multidecadal variability to trends in globally averaged SST depends on the length of the period used to compute the trend. If the period is short, say 10 years, internal variability can dominate the forced trend. However, if the averaging period is long enough, say 60 years, the contribution of internal variability to the trend is small. This means that interval variability cannot account for the century-long warming trend observed in spatially averaged SST.
http://journals.ametsoc.org/doi/abs/10.1175/2010JCLI3659.1
t_p_hamilton says
Septic Matthew asks:”Just to clarify my question, I don’t think there is any prediction from AGW concerning tropical cyclones: water will be warmer, air will be warmer, there will be more total moisture in the air, and the air-land difference will be greater creating greater winds. If total rainfall is less over land, then it may also be less over water. I have not yet found a clear exposition of what, for example, GCMs may predict.”
I don’t think GCMs predict hurricanes well because of their local nature, but warmer waters are predicted, and hence more major hurricanes (category 3-5). Not more hurricanes. The Accumulated Cyclone Energy is so dominated by noise that I doubt that there is a way to derive an empirical trend with much confidence.
Hank Roberts says
http://scholar.google.com/scholar?hl=en&q=how+organic+farming+per+se+improves+the+soil+erosion+problem.&as_sdt=2000&as_ylo=2010&as_vis=0
From the first page of results, three (out of about 1,660 total)
http://profdoc.um.ac.ir/articles/a/1006818.pdf
http://www.springerlink.com/content/w652l785v6305512/
http://www.springerlink.com/content/g073wj1j8582w7q8/
Dan H. says
Bob,
[edit – please keep comments about other posters to a minimum. Facts and cites are far more effective.]
After all Gavin has written about climate sensitivity, I fail to see how so many people keep getting it wrong. The direct, black-body response due to a doubling of CO2 has been reported as 1.0-1.2. The Forbes article to which David linked said 1. This is not the same as the climate sensitivity value with feedbacks included, which has a wide range of values depending on individual responses. The IPCC truncated the modelled climate sensitivity values at 10 for the AR4 report, granted there were very few above 8 (section 10.5)
You can call deniers and skeptics the same thing if you like. [edit – OT]
In your second link, you seem to think I got Prof. Latif’s conclusions wrong. I suggest you re-read what he said, wrote, and presented. He is not talking about the start of an ice age or anything, just a slight cooling for the next decade or two, before warming resumes.
If I believe someone has posted an incorrect statement, I will research it thoroughly, and re-read the post to ensure that I have not misunderstood the post, or in error. I suggest you do the same, otherwise you just appear silly and ignorant.
ccpo says
@425 JB: Dr. Al would almost certainly say you don’t understand exponents if you think cars are sustainable. They are not. Your statement they can be indicates you are not thinking whole system, nor on the appropriate scale.
First, you have to consider full life cycle for each and every component of every car and every component of every system it takes to get that car from ores to the driveway, then it’s full lifetime.
Second, scale. 7 billion people, headed for 9 billion, on a planet already overused by 50%, and all of them striving to live at the same level as the highest-consuming nation, the US. Have you read anything from Heinberg? http://www.youtube.com/watch?v=ybRz91eimTg
@429 Jim B.: No need to till. It also kills of soil biota and the billions of interactions going on that are actually responsible for growing the seeds you plant. Just say no. and, save yourself tons of time and energy.
Also, no need for a tractor at all in a world of small scales, but maybe sharing one in a community for fallen trees, etc., might be good. If you can make it sustainable.
@434 Ray: Actually, you don’t necessarily need anyone to water trees, you need good design that brings the water to the trees and/or stores what water falls in the soil. Trees are their own great funnels, so you typically only need to help out a bit with good design, including how you plant. The design will depend a great deal on the individual site, but swales, key line designs, etc., will keep water where it falls or move it where you need it. Look at some of the work done with earthworks for managing water.
@435 Jim’s comment: You raise a good point about geo-engineering, but some scale of land/soil/water management can be used to make the deserts sustainable for a given N population of not very large size. You also make me realize we should do some backcasting and inductive/deductive work and try to identify some of those “destructive” changes we should not try to stop. An interesting twist I’d not thought of before.
@447 RodB: You’ve been pretty well answered by the others, but let me say a couple small, possibly important things:
1. You are correct that organic is not necessarily environmentally friendly. You will see me speak only of regenerative agriculture, evidenced somewhat by the Rodale study I posted and, I believe, Jim quoted from. The US gov definition of organic is a joke.
2. Regenerative ag, as stated above, sequesters carbon in the soil. That coupled with the loss of soil carbon in non-regenerative ag, it’s a huge swing. If ag is *only* organic, it’s still an improvement over chem ag.
3. Soil with 1% organic matter will hold something like 37 liters or gallons per square yard; 5% increases that to something like 137. Think on what that means for water conservation and how little watering you’d need to do with a combination of healthy soil and good mulching.
4. A regenerative garden will be very biologically diverse because all elements interact, all elements are supported by at least two other elements, all elements have at least two functions and co-planting is a key principle. Our small garden (perhaps 30 x 40) had over 40 different varieties and/or species in it.
Those of you who are basing your assumptions on what you have seen over the last 7 – 10 decades have some re-learning to do. The marriage of old wisdom to new research and technology has shown us how to grow food with limited effort, zero chem inputs, with greater diversity and resilience and also helps point the way to solutions to climate and energy solutions, including how we arrange ourselves on this planet.
Cheers
[moved to the open thread–everyone continue this discussion there please. Thanks. Jim]
Rod B says
Bob (Sphaerica) (76), nobody as smart as the guy who accepts all I say and draws like conclusions.
…just sayin’.
CM says
Dan H. #73,
Look, it’s no shame to be misled by sloppy press reports; you don’t need to defend them.
Latif did not “postulat[e] that the switch to negative AMO indices will lead to 2-3 decades of cooling”, as you said in #11, in his 2009 WCC presentation that I assume you are referring to. I did my homework on this at the time. In the WCC talk, he did seem to “point to cooling between now and sometimes in the 2030s” — as a scenario to illustrate the kind of surprises decadal fluctuations around a warming trend might throw up. A rather unlikely scenario, I think, but he was arguing the case for improving our understanding of the decadal scale. If by the “report in 2008” you mean the Keenlyside et al. letter in Nature, it did not predict cooling — just a brief warming pause ending about now and a slower warming until the 2020s than some other simulations.
Rod B says
gavin, helpful informative comment re the Wikipedia todo (81).
CM says
Gavin (#77), thanks. Yes, I thought the paper made good sense, but your comment was helpful with the things I have no idea how to assess.
Bob (Sphaerica) says
88 (Dan H),
Latif never said decades (this is the Internet lie that refuses to die), he said “next several years,” which I take to mean anywhere from 2 to 5 (very far from 30). And do not get your info on this from either WUWT, or news sites like The Daily Mail or Times Online. They all very deliberately misquoted him, or took his statements out of context.
You are exactly right in saying the direct effect of CO2 is 1C, and the cumulative effect of positive feedbacks, i.e. total climate sensitivity, is estimated to be around 3C.
But the question is what Meyers actually said. I’ll include his quotes once again.
and more importantly (again, emphasis mine):
He is very clearly refuting the impact of positive feedbacks on climate sensitivity. He is saying that CO2 will at worst directly cause 1C of warming, and that’s all, and therefore there is nothing to worry about.
There’s no way around it. It’s right there. You can’t make his words mean something else.
Your statement:
is therefore irrefutably false. Meyers did make that claim as the foundation of his entire piece, and as such that piece is complete drivel.
Chris Colose says
Dan H–
There’s certain key words and phrases people say which people who are familiar with the blogs have come to recognize as being indicative of someone not really serious in discussing the issues. One is someone who insists on describing scientists as being concerned with “catastrophic global warming.” Secondly is making sweeping categorizations between “skeptics and alarmists.” Another is taking a collection of thousands of people who have worked for decades and tossing them into one group who are trying to “dismiss other causes” which is indicative of a conspiracy. Another issue is over-reliance on what one professor somewhere said without placing this opinion in the context of the uncertainties in a very young field (decadal prediction, large uncertanties) and differing perspectives from other publishing scientists.
I’d suggest if you want to be taking seriously, you begin with learning how to properly frame the “debate,” what *serious* people are actually disagreeing on, what they are arguing for, etc. There’s just a certain standard for intelligent conversation irrespective of the science that you feel to be correct. Then, we can get to the technical details.
TimTheToolMan says
@Gavin and others
I’m talking about what would happen if the models/”our understanding of the atmosphere” was discovered to have a relatively major flaw, and this is quite different to acknowledging that the models go through incremetal improvements.
In my opinion this possibility represents a significant risk to a lot of our science to this point. A lot of science these days depends on those models having skill.
And so I guess it comes down to what you consider “skill” to mean and in what situation a model shows skill. My opinion is that if a climate process is modelled fundamentally incorrectly then that model actually has little to no skill for many/most questions its used to answer particularly those of “projection”
The model’s “skill” reduces to a curve fit skill.
Now I understand the usefulness of models and using them is a “damned if you do and damned if you dont” situation but I think that their use has become too pervasive with little acknowledgement of the dangers producing a result that is unverifiable.
[Response: GCMs are not curve fits. They have successfully predicted, the cooling after Pinatubo (before it happened) (and the change in water vapour, radiation, circulation), that the satellite data sets had to be incorrect, that ice age ocean temperature estimates were wrong, that climate would warm at about the rate it has from the mid 1980s, that the ozone hole would impact southern hemisphere winds, that teleconnections from ENSO would affect rainfall around the sub-tropics, etc, etc. etc. How do any of these achievements disappear if an adjustment is made now to the models? And doesn’t it seem a little unlikely that all of the myriad examples of models correctly matching some aspect of the climate are simply coincidental – even after they have been verified? And that weather forecast models work? You are asking about hypotheticals that just have nothing to do with reality. – gavin]
David B. Benson says
David Palermo @9 — I encourage you to read Mark Lynas’s “Six Degrees”
http://www.marklynas.org/2007/4/23/six-steps-to-hell-summary-of-six-degrees-as-published-in-the-guardian
to discover just how bad is bad.
pete best says
Something called the paleoclimatic record tells us as much if not more than the models do alone. Hansen tels us that the models are interesting tools but the paleoclimatic record offers more evidence that backs up the models and bears out what Gavin is telling you.
ccpo says
More needs to be said about water and trees on a massive scale, and the need to balance long standing environmental positions with relatively new challenges from CO2.
I’ll have to do some re-reading, but trees should help hold water in the soils, and trees themselves, because they tend to funnel rainfall down to their root systems where it can soak into the ground. The root systems help hold soil in place, and the leafs falling, if deciduous, should be building humus, thus both holding more water and providing mulch to reduce evaporation. They also have interesting micro-climate and wind effects.
There are, however, large differences due to types of trees, latitudes, etc. Overall, should be a negative feedback to AGW.
One of the best things about trees is that they release CO2 when burned, but we can count what we need to burn and grow to balance, making wood one of the few truly sustainable fuels we have… though probably not for 9 billion people.
Some things don’t really need to be over-analyzed, do they? Basically, more trees is good. If a bunch of those trees are fruit and nut trees built into edible forests, so much the better. If a bunch more are fast-growing trees we can coppice for fuel, building materials, what have you, even more so. And if yet more are planted to restore old growth types of forests, well, we’ll have made some kind of impact on AGW while moving a goodly distance towards a sustainably designed society.
[Response: I agree with much of what you’re saying, but be very careful with conclusions on the topic of global effects of forests on the climate system. Hopefully we can do a post on the topic because people are clearly interested. In the mean time, everyone interested should definitely read this paper by Gordon Bonan, which has already been cited 168 times in ~ 2+ years.–Jim]
Ken Peterson says
The temperature of the north Pacific is critical to pepper crops in Texas and winter visitors to Florida through the following mechanism.
The west to east flow of the Arctic currents melts the western ice, creates a large high pressure in the western Arctic and generates westerlies.
Recent failure of this system has resulted in two highs being generated over Hudson Bay and the Barents Sea north of Norway. These two highs cause a blocking action to the jet stream, resulting in a loop to the jet stream extending all the way to the Gulf Coast.
Weather maps of the spring of 2010 are still around showing frigid air from the Yukon to Florida. Winter of 2008/2009 generated 22 degree nights during the flowering of the pepper crop in southern Texas. Some beautiful pictures of snow in southern Mississippi were not appreciated as much.
This process, fluctuating water temperature in the north Pacific/north Atlantic, suggests one should also look SW of the Barents Sea.
Two stationary Rossby Waves caused the destruction of the Russian wheat crop via excessive heat and the flooding of the Indus Valley due to abnormal condensation of the monsoon moisture. Various organizations report as many as 20 million people dispossessed by the flooding. The Russians have stopped all exports of wheat and due to the drying of the soil, are waiting to see if winter wheat can be planted. When the decision of exports was announced to price of wheat went from $5.50 to $8.60 a bushel.
Other anomalies in this area include last winter’s 8 foot snowfall across Tibet and northern China resulting in a large loss of livestock and rail closures in China.