Here’s an open thread for various climate science related discussions, to prevent more off-topic clutter everywhere else. We have some good posts coming up, but if you want to discuss something you read in the media, saw in a press release or just wanted to ask about, this is the time.
Some interesting things we’ve seen recently include discussions on the epistimology of climate modelling, Andy Dessler’s adventures in debate land and his new paper on water vapour trends, and a review of trends in the Columbia glacier. Have at it.
Addendum: Kevin McKinney has beaten us to the mention of this, but another recent article of importance is a thorough review of the state of knowledge of drought, past and future, by Dai. The article is open access here.
Jim Bullis, Miastrada Co. says
489 anon anon anon, Kevin McKenny, Secular Animist, Hank Roberts, David B. Benson, BPL (and many others)
You appropriately ask for detail. So reviewing a bit, I found that let Brian Dodge misframe the discussion by not adequately dissecting his post. He set the requirement that the new forests would have to capture and sequester the entire coal CO2 output.
I began with the premise that forests would be superior to the EPA planned ‘carbon’ capture scheme. This was to be imposed on newly permitted power plants, and then somewhat on modernizing projects for old systems. This translates somewhat vaguely to a requirement for forests. But it certainly does not imply capturing the entire CO2 output from burning coal.
I should realize that there are many who would have us ban coal outright, as California appears to have done. So I should realize that this is not an equivalent to what I am trying to accomplish, and I should make that clear.
My suggestion involves a 3000 mile long aquaduct with 10 mile branches to each side sufficient to irrigate 60,000 sq. miles of forests. This is 1.5e6 ha. Estimating 100 trees per ha gives us 1.5e8 trees and each being of dry forest mass weight in 25 years of 10 tons we are now at 1.5e9 total dry wood mass. About half of this is elemental carbon, so that is 8e8 tons of carbon, which is about 3e9 tons of CO2. 3e9 tons of CO2 captured over 25 years gives us .12e9 tons CO2 captured per year.
Using 2e9 tons CO2 from 2e9 mWhr coal fired power per year according to Brian Dodge (#389 of the Cucinelli post:
https://www.realclimate.org/index.php/archives/2010/10/cuccinelli-goes-fishing-again/comment-page-8/#comments ),
we can conclude that 6% of CO2 from coal in power plants could be captured. That would appear to be enough to make the CCS planning by the EPA unnecessary.
To make a fair comparison with renewables, consider the cost of providing 6% of 2e9 mWhr of power from renewables. The forest plan here roughly outlined would make power from coal equivalent to renewables, in that amount.
Jim Bullis, Miastrada Co. says
498 Hank Roberts,
Yes, hot water heating is promoted already.
I should have noted that, though it is obvious just on the basis of cost.
However, I am thinking about clothes dryers, and cooking appliances which are still very substantial heat users. And conversion hardware is readily available. But this conversion would mostly benefit CO2 situation, and is not quite so apparent in the cost decision.
Jim Bullis, Miastrada Co. says
496 497 Sec An, and Pat
I am so busted! Oh my! ‘Windmills’ instead of ‘wind turbines’, how embarrassing.
Science has advanced again.
Jim Bullis, Miastrada Co. says
489 anon anon anon, Kevin McKenny, Secular Animist, Hank Roberts, David B. Benson, BPL (and many others)
(I slipped on an exponent in my previous reconstruction of original calculations. Now it appears that there is a fair amount of margin, as I had previously thought.)
You appropriately ask for detail. So reviewing a bit, I found that let Brian Dodge misframe the discussion by not adequately dissecting his post. He set the requirement that the new forests would have to capture and sequester the entire coal CO2 output.
I began with the premise that forests would be superior to the EPA planned ‘carbon’ capture scheme. This was to be imposed on newly permitted power plants, and then somewhat on modernizing projects for old systems. This translates somewhat vaguely to a requirement for forests. But it certainly does not imply capturing the entire CO2 output from burning coal.
I should realize that there are many who would have us ban coal outright, as California appears to have done. So I should realize that this is not an equivalent to what I am trying to accomplish, and I should make that clear.
My suggestion involves a 3000 mile long aquaduct with 10 mile branches to each side sufficient to irrigate 60,000 sq. miles of forests. This is 1.5e7 ha. Estimating 100 trees per ha gives us 1.5e9 trees and each being of dry forest mass weight in 25 years of 10 tons we are now at 1.5e10 tons total dry wood mass. About half of this is elemental carbon, so that is 8e9 tons of carbon, which is about 3e10 tons of CO2. 3e10 tons of CO2 captured over 25 years gives us 1.2e9 tons CO2 captured per year.
Using 2e9 tons CO2 from 2e9 mWhr coal fired power per year according to Brian Dodge (#389 of the Cucinelli post:
https://www.realclimate.org/index.php/archives/2010/10/cuccinelli-goes-fishing-again/comment-page-8/#comments ),
we can conclude that 60% of CO2 from coal in power plants could be captured. That would appear to be more than enough to make the CCS planning by the EPA unnecessary.
To make a fair comparison with renewables, consider the cost of providing 60% of 2e9 mWhr of power from renewables. The forest plan here roughly outlined would make power from coal equivalent to renewables, in that amount.
David B. Benson says
Jim Bullis, Miastrada Co. — Now add in the cost of cutting and moving the wood to a burner. I hazard this is much more expensive than simply building and running nuclear power plants, for which LCOE (busbar) of US$0.065/kWh appears obtainable.
Anonymous Coward says
Jim Bullis,
You keep posting preposterous figures for your super-forest which would absorb an eye-popping average of 40tC/ha/yr in addition to the carbon which ends up in the forest floor, debris and such. After a mere 25 years, your super-trees would contain more carbon in their wood than the whole biomass of a similarly-sized centuries-old forest. You are an order of magnitude off… at best. People have studied forests, you know. There’s plenty of material readily available online. Hank has posted references to a few papers.
How can offsetting 6% of the emissions from coal possibly be sufficient anyway? You just spoke of forests as an alternative to seawalls!
I’m amazed that people still use electric water heaters in a state which has so much trouble with electricity. Electricity is obviously too cheap. But why convert to natgas? Isn’t much of the state’s housing stock ideally suited for solar water heating? That’s a small fraction of electricity consumption anyway. Calfornia has a cooling problem, not a heating problem.
Secular Animist,
Wind and solar are not close to providing even a tenth of the energy we currently use. But science tells us it would be prudent to cut emissions yesterday. Orders of magnitude again…
By being unserious about wind and solar, you encourage people to be equally unserious about schemes with even less merit like turning deserts into forests.
SecularAnimist says
Jim Bullis wrote: “These exercises should tell us that such enterprises will not scale up to non-trivial size.”
You really should get out more, and learn about the numerous “non-trivial” utility-scale wind power and solar thermal power plants that are being built now.
Jim Bullis, Miastrada Co. says
503 David B. Benson
Something seems lost in translation.
I would be interested in comparing coal plants to nuclear plants after coal plants would be made into overall clean systems by combination with standing forests. This would be a low cost, no cost, or maybe even profit making adjunct to coal using systems, that would be very favorably comparable to very expensive ‘carbon’ capture as being planned by the EPA, with cost ‘up to $95 per ton of CO2’. I do not see the forest system adding much to the cost of coal operations, so the present advantage of coal over nuclear would continue.
Once a forest is mature, there would be selective minimal harvesting which would be to keep the forest healthy and secondarily yield wood products of value. Wood harvesting costs would include mop up of waste by turning it into biochar if possible. That would be a charge against the wood products. I think there still would be a net gain. Remember though, biochar would be a third order activity. But there is an ongoing forest management burden. In the end there might be a need for a modest charge to the coal burning power producers.
Still, the bigger economic gain would be from ordinary agricultural crops that would be enabled by the availability of water along the way.
Nuclear power costs need to be quoted in terms of capital investment and cost of ongoing operations. I am not sure what your number includes. The same rule applies to the forest concept, but I have not gotten that far with cost analysis. My intuitive level thinking is that the upfront costs would be recoverable from water charges over the long term, or from sales of whatever harvested products.
Jim Bullis, Miastrada Co. says
anononon
Do you dispute the 100 trees per ha, the 10 tons per tree estimate, or what?
Do you know the mass of a century old forest? At a certain mature age, it does not go up much, so being centuries old does not necessarily mean that much.
I look at all references offered. Some are applicable. Some not. Much of the talk is about capture rates for mature forests, since that is the main concern where deforestation is being addressed.
By the way, I did not count below ground storage of carbon compounds. Please include that for the old forest. My estimate is about 11 times higher, per ha, than Pres. Hu quoted for their 15 year project plan. I am talking about 25 years though, and I do not know how his forests would be arranged and managed, including the harvest cycles and watering intensity.
Sorry about the 6% but the correction as shown in #503 makes it 60%, which is more exciting. In fact, if we double forest mass by counting root structures, we could take care of the entire coal problem.
Many houses here had rooftop solar water heaters 30 years ago and most have been torn down. I don’t know anybody who would want an electric water heater, but they still sell them at the hardware store.
Jim Bullis, Miastrada Co. says
506 Secular Animist,
Show me the project that is valid without public subsidy, and is expected to make it as a competitive source, where the feed-in tarif is based on the lowest cost generating option having available capacity. A system honestly competing on that real basis would be exciting. Until that kind of system is offered, we are just being self delusional.
Patrick 027 says
Re 505 Anonymous Coward – “By being unserious about wind and solar,”
No I’m quite sure he’s serious. When you say “Wind and solar are not close to providing even a tenth of the energy we currently use“, are you refering to the present supply of energy from those sources, the present manufacturing rate, or the present price? Obviously the first is a condition that can be changed, at a rate that depends on how fast the second can be ramped up; the third is important to how easily those can be done, but the third also depends on those things (increasing experience with the technology and economy-of-scale).
Jim Bullis, Miastrada Co. says
505 anonanon
Your oblique wording merits some thought in, “By being unserious about wind and solar, you encourage people to be equally unserious about schemes with even less merit like turning deserts into forests.”
Does this mean I have to endorse silly stuff in order to get people to be serious about forests? My thinking is that all this silly stuff is a distraction from real work. Promoters discovered these gold mines in the 1970s and not enough has changed to bring real merit to the unmitigated bogosity of the origins of such games. But someday, something might advance to a convincing technology.
The word ‘deserts’ was never mine. If I remember right, that was a strawman hostile assumption by Brian Dodge (#389 Cuccinelli), though I was ok with it as a relative comparison. He based his analysis on sequestration rates reported for mature Southern forests, which I believe sequester very little, and that led him to an error of an order of magnitude in land requirement. He also required water from irrigation in an amount equal to rainfall.
I use the words ‘minimally productive land’.
David B. Benson says
Jim Bullis, Miastrada Co. — Maybe here is a solution.
New solar-powered process removes CO2 from the air and stores it as solid carbon:
http://www.nanowerk.com/spotlight/spotid=17198.php
As for growing lotsa forests, this
http://www.springerlink.com/content/55436u2122u77525/
was thoroughly discicted here on an earlier RealClimate thread and sofar doesn’t seem to be going anywhere.
SecularAnimist says
Anonymous Coward wrote: “Wind and solar are not close to providing even a tenth of the energy we currently use.”
Say, are you the same guy who once wrote “Cell phones are not close to providing even a tenth of phone service”?
Or maybe, “Personal computers are not close to providing even a tenth of the world’s computing capacity”?
Perhaps you scoffed at the idea that a few clattering automobiles could have a significant impact on a horse-based transportation system?
The “serious” fact is that we have a vast and never-ending supply of solar and wind energy.
And we have mature, powerful technology to harvest it.
And that technology is already being rapidly deployed world-wide at every scale from giant utility-scale wind farms and CSP power plants to off-grid PV systems for rural villages in Africa and India (who desperately need electricity and have no prospect of ever being connected to a utility grid). In fact, wind and solar are the fastest growing sources of new energy generation in the world, and have been for years, and are growing at record-breaking double-digit rates year after year.
And the technology is improving rapidly, from wind turbine designs to ultra-cheap, high-efficiency PV materials that can be incorporated into everything from windows to the surface of automobiles to clothing.
And very simple policies are already well-known that can accelerate the rapid deployment of wind and solar even more — from feed-in tariffs to tax credits.
Those are the “serious” facts.
We absolutely CAN transition to an entirely solar & wind (and geothermal and biomass and hydro) powered energy economy, and we can do it much more easily, much cheaper, and much faster than most people realize.
Whether we WILL do so depends on whether we get “serious” about it. And I am very serious about it.
Kevin McKinney says
One of the great things about renewables today is how the technology advances, the economics improve, and deployment grows even as various folks on blogs pontificate about how it’s a scam, can’t be relied upon, is negligible, and yada yada yada. My perception is that the doers are making fools of the naysayers.
Particularly interesting is the case of China; a couple of years ago, this humble deponent was trying to point out to the “whatever we do, China and India will negate, hence let’s do nothing” crowd that China was transparently aiming to become a world leader in the manufacture and export of renewable energy technology. Others, more knowledgeable than me, were warning that “China will eat our lunch” in the renewable industries.
Today, they are doing it. Check out these graphs:
http://climatechange.foreignpolicyblogs.com/2010/09/12/chinas-renewable-exports/
Four or five years ago, I was just learning about the existence of flywheel energy storage. It sounded crazy to me–surely the energy capacity couldn’t be sufficient, I thought. Today, they are being deployed commercially by Beacon Power of Massachusetts in 20-MegaWatt modules–though Beacon is still, admittedly, losing money at a pretty brisk clip. But then, they have to build capacity, and that is going to cost money. They don’t seem to have trouble obtaining investors.
http://www.beaconpower.com/
You can access some nice pics of the construction of their 20 MW Stephentown, NY plant–the corporate white hope, it looks like; also the quarterly report for 3rd quarter 2010, for financial types.
Yes, there is an order of magnitude to go. But, unlike the case with overall CO2 mitigation per se, movement in the right direction is not only discernible but spectacular. In the aftermath of an election which has the potential to set US GW policy back a decade or more, it’s worth remembering that.
adelady says
I think the advance in computing power is a great analogy to use for people who insist that we “can’t” produce enough power from renewables. Just look at the cost, size, weight and the power requirements of a computer of just 10 years ago that would be equivalent to a standard laptop today. Let alone 15 or more years ago.
Ray Ladbury says
Adelady,
The advance in computer power owes to Moore’s law–which states that transistor density doubles about every 18-24 months. This guarantees that you will see exponential growth in computing power, and after 30 years, the result is indeed impressive.
When Moore proposed his law, it had a technological basis–scaling of CMOS technology. There was a recipe for building smaller transistors. The CMOS scaling recipe basically failed in the ’90s. However, by that point, it was an economic necessity. The entire electonics industry was predicated on such growth. Since about 1995, Moore’s law has been sustained by new technologies, new materials and new designs, but it has been sustained nonetheless. There is an unprecedented consortium of semiconductors that produces the International Technology Roadmap for Semiconductors (ITRS), which tackles common problems for the industry.
In terms of energy, there is no nice recipe like CMOS scaling. However, there is an exponential relation–Rosenfeld’s Law–which says that energy per $1 of GDP decreases about 1% a year. This pace is much slower. Maybe what is needed is an International Technology Roadmap for Energy (ITRE).
JCH says
” Pickens figured out it was no go. …” Jim Bullis, Miastrada Co.
What did he figure out?
He’s still building two farms: one in Canada and one in Minnesota. As for the canceled farm in the Texas Panhandle, he says he will build it once the transmission lines are wherever he wants to be between planned and built.
Jim Bullis, Miastrada Co. says
518 JCH
I think you are right about what Pickens said about transmission lines.
The real question is how much public money is he getting to do it.
JCH says
How much money is the public not paying so power companies can burn coal? For instance, the public was not paying for adequate mine safety – so coal could be cheaper than its true cost.
The cost of building seawalls should be in the price of coal-sourced electricity. The cost of your forest and irrigation project should be in the price of coal-sourced electricity. It’s not.
The public always pays. They pay now, or they pay later.
Jim Bullis, Miastrada Co. says
521 JCH
You are absolutely right. The public pays. The question is how much.
If we are careful to consider the difference between nameplate capacity of wind systems versus the actual yield that is about 20% to 30% of peak, and include stand-by generating capacity using relatively inefficient natural gas peaking type generators, and then put a reasonable depreciation factor on the wind towers themselves, things do not look so cheap. All things considered, the long term costs of wind power do not compete at all with the cost of coal power.
Irrigated forests cost would require upfront money also, but this would be recoverable by products sold from the forest, as well as crops from the ancillary agriculture that would also be enabled by the irrigation system. Assuming this to be true, upfront costs would be recovered so the cost to the public for power would stay the same as it is, that being the cost of operating the coal fired power system.
Jim Bullis, Miastrada Co. says
513 David B. Benson
Thanks for the references.
The Springer Desert project was badly constructed, though it provides interesting comparative data. For openers, the $1 tax per gallon that they proposed is a political non-starter.
I see no potential in growing forests in Saharan deserts or anywhere that does not have existing fresh water supplies that can be drawn from; making fresh water is nowhere close to being efficient and cheap. Were freshwater supplies possible at a reasonable cost, there would be no need to dry up Arizona to enable vast supplies to Los Angeles. It simply does not make it for cost effective irrigation, even where there is a good paying crop to be gained from water availability.
They brushed aside the idea of forests in temperate regions on the basis of albedo effects, though this would only apply in initial years of growth. Logic is not developed to explain why this would not be an issue in the sub-tropical zones they favor.
Then they use a tree density of 1000 trees per ha, where I planned only 100, so the whole system is different. They would harvest and mostly burn the whole crop after a “few decades” where I would preserve the sequestered CO2 in carbon compounds permanently in standing forests, harvesting from mature forests only to the extent needed for effective forest management. And then the objective would be to maintain wood mass in permanent forms; and ultimately the scrap would go into biochar which also accomplishes permanent CO2 sequestration.
Their selection of eucalyptus as the tree of choice is an obvious flaw known to Californians who are familiar with dense eucalyptus as comparable to an open can of gasoline. We also know that the intended use of that wood for railroad ties turned out to be unworkable, or at least comparatively so compared to the oak that is still mainly used. It is even unpopular as firewood since it produces excessive pitch in chimneys. But the main issue is the short harvest cycle whereby the sequestration action made void by consumption of the wood mass in ways that would turn it back to CO2.
On the biochar subject, you pointed out that there would be a transportation cost in the biochar production operation. It might be worth looking at using the aquaduct as a canal for low cost transportation of scrap wood to central burning points where the biochar process would be carried out. Still, I do not see this as a high volume operation.
Jim Bullis, Miastrada Co. says
517 Ray Ladbury
You are quite right about digital electronics for computational purposes being different from energy devices.
There have been slow to barely perceptible advances in silicon power transistors over the last 50 years, where large masses of silicon and big heat sinks determine sizes of devices.
Once we created digital logic circuits, we enabled a crop of people who would never be required to think about thermodynamics. That is an impediment to the wonders of Silicon Valley leading us into green bliss.
Kees van der Leun says
NASA: October 2010 was 2nd warmest ever on land (+0.87C, http://bit.ly/GISland), 3rd ever on land+ocean (+0.62C, http://bit.ly/GISlandoc)!
Jim Bullis, Miastrada Co. says
517 Ray Ladbury
Rosenfeld’s attempt to relate use of energy to GDP is a little light headed. It is also lightheaded to point at California for having made great strides in reducing energy use. In energy efficiency it is unclear whether he did more harm or good.
In 1950 to 1960, the building codes were lax, energy in the form of natural gas was almost free, and cheap construction practices dictated unbelievably sloppy home construction. I know, I live in a 1960 built house. In the rest of the country, a greater degree of sanity prevailed. Thus, California had a long way to go just to catch up with normal. Thus, efficiency improvements were low hanging fruit, so the gains made by California looked good in comparison to colder climate states where they had always paid some attention to insulation.
As we moved into the 1970s building codes were tightening up, and we stopped seeing houses with about 50% glass windows, single paned. Energy prices were going up so things started shaping up even more in California.
In the 1990s the price of natural gas started upwards and energy use became a lot more of an issue.
Thus, we have obvious reasons why energy use was going down, at the same time that GDP was going up. Noting a relationship seems to have turned into a ‘law’, and this is rather hard to understand.
I wonder if Rosenfeld was asked if this ‘law’ could be named after him.
We want to recognize the push for appliance efficiency which seems to have been a Rosenfeld credit. However, it is perplexing how a physicist could have missed the mark in characterizing coefficient of performance of refrigeration systems by ignoring the energy actually consumed in generating electricity. The upshot of this is that vapor diffusion devices were wiped out of existence, though they are actually superior in energy efficiency, when correctly defined. Not only is the efficiency advantage lost, the CO2 impact of coal as the heat source rather than natural gas is also significant.
Rod B says
Kevin, they don’t say, “it’s a scam, can’t be relied upon, is negligible.” They say things like the reliability (and availability) is a major probable and inhibitor; some say it is miles away from getting beyond negligible; only outliers say “scam.” These things are pointed out to put a bit of realism into what is often wild rose-colored-glasses exaggerated optimism. Like the flywheel technology. Recovering from a few seconds of cloud cover for a small- or even medium-sized PV system is light years away from 24/7 grid availability.
I’m not meaning to throw cold water on your optimism. Optimism is good and can’t hurt the effort. But the engineering/scientific assessments ought to carry some degree of realism, at least in these circles.
Rod B says
adelady, that’s interesting, but potential and past technological advancements in power generation and in computers have absolutely no bearing on each other.
Rod B says
Adelady, ps – what Ray said ;-)
SecularAnimist says
Rod B wrote: “Like the flywheel technology. Recovering from a few seconds of cloud cover for a small- or even medium-sized PV system is light years away from 24/7 grid availability.”
Not light-years away:
IEEE tackles carbon reductions, grid storage
by Martin LaMonica
10/25/2010
CNet.com
See also the photo gallery at Energy storage on grid heats up which illustrates a variety of grid storage technologies, including batteries, flywheels, compressed air, pumped hydro, and thermal storage with molten salts.
There is a huge amount of work being done in this field that most people who think that large-scale grid storage is “light years away” don’t know about.
John says
We need your help pushing back against the “deniers” on the amazon boards:
If you scroll all the way down to the discussion section you will see discussion after discussion for the sole purpose of deceiving people about AGW:
http://www.amazon.com/000-Solved-Problems-Physics-Schaums/dp/0070257345/
so if you are real climate expert and know how to argue and win — join in!!
JCH says
524 Kees van der Leun says
10 November 2010 at 2:21 PM
NOAA says global land and ocean, January through September, was tied with 1998.
Global cooling is taking it way down, right?
adelady says
Guys, guys. I’m not thinking that they’re the same thing.
I have in mind discussing the issue with the unimaginative who would’ve said the same kind of things about computers – What, me? Lug around one of those things? Are you mad? (And now they fit into handbags.)
Rod B says
SecularAnimist, the IEEE formed a working committee to study interface standards among source, storage, and transmission lines??? This will get national grid-level storage up and working by when, would you guess?
A large PV farm in CO delivers about 50 MWh to about 1500 homes over about a useful 6-plus hour day from a 8.3 MW system. If the off-peak requirements averaged 25% (might be lower I suppose — I’m just doing back of the envelope ballpark) delivered by batteries, they would have to provide about 38 MWh each day (less if the 25% figure is too high). This is pretty close to today’s leading edge of battery utility for 0.0004% of the nations electric output. (Sounds piddly on the surface, but in context is actually pretty good, IMO.) The odd thing here is that about 3/4 of the PV output now has to go recharge the batteries, putting a monkey wrench into the analysis. Flywheels are pretty helpful for smoothing a couple of seconds of transmission anomaly, but are virtually useless for high energy long-term storage. We are a long long ways from national grid level storage that is available and reliable with sufficient useful capacity. More like light years than just around the corner.
Again, I am not pooh-poohing any of the renewable/storage efforts — I think they’re great. Nor do I fault the scientists and engineers involved for being optimistic and even hyperbolic; I think that’s the way they should be — helps their motivation and success. But in 3rd-party discussions on the objective technical level, like in RC (but maybe not so much in political discussions…) I think the hyperbole is not helpful and even the optimism should be tempered a bit.
adelady, fair enough.
Kevin McKinney says
Rod said: ‘Kevin, they don’t say, “it’s a scam, can’t be relied upon, is negligible.”’
Uh, yes, they do Rod–all the time. I know, it falls to me (and others like me) to try and counter the disinformation. And disinformation it is; the contention is not that proponents are being unrealistically optimistic, the contention is that these technologies are a total waste of time and money.
Not that you’re saying that. But there’s lots that are. Trust me.
Barton Paul Levenson says
JB 512: all this silly stuff is a distraction from real work. Promoters discovered these gold mines in the 1970s and not enough has changed to bring real merit to the unmitigated bogosity of the origins of such games. But someday, something might advance to a convincing technology.
BPL: Denmark–20% of electricity from wind turbines, 50% by 2020. Portugal–45% of electricity from renewables. Germany–photovoltaic coming on-line so fast they’re worried it will disrupt the grid. Need I go on? Get your head out of that dark space.
JCH says
My son is in medical school. The area is covered with wind farms. There is a parts depot just outside the city: blades, turbines, housings, towers, etc. spread out over about an 1/8th section. Trucks with parts coming in; trucks with parts going out, never ending. T. Bone better get his butt in gear, or there isn’t going to be room for him.
Between Sweetwater and Post, they put them up on some beautiful ridges, cap rock I guess.. Butt ugly. Jim should read about the history of Post, Texas. Paddling a big idea up river. Not easy.
With respect to wind power, the 1970s was the “Armature Hour” when compare with what is happening now.
Dan H. says
JCH,
According to CRU, the first 9 months of 1998 was 0.1C warmer than the first 9 of 2010. 2010 was second, edging out 2002 by 0.01C. They have not posted October’s numbers yet.
Dan H. says
JCH,
According to CRU, the first 9 monthso of 2010 was 0.1C cooler than 1998, and 0.01C warmer than 2002. They have not updated with October’s numbers yet.
JCH says
Thanks for the information. It’s sad they don’t have a complete team.
I’m an American, Dan. NASA and NOAA – they’re my side. We’re winning because we have a point guard who can drain it from way up inside the Arctic Circle. His shots are coming in hot now. Back in 1998, our Arctic Circle gunner was ice cold.
Jim Bullis, Miastrada Co. says
Moved from 399 Adelady On Science, Narrative, and Heresy
The Great Artesian Basin is very interesting to the scheme of a sensible water distribution. Perhaps it would be possible to use this basin as the water paths needed.
Yes, there are critical issues, which are probably being worried about as we speak, as to preventing salt water incursion. This happens more when there is dire need for water.
We have the same problem on a much smaller scale in the Santa Clara Valley. (Yup, some people think there is Silicon down there.) The San Francisco Bay delivers salt water right to the edge of the aquifier that runs from the Bay to the mountains. Over 50 years of water management has been directed at keeping the aquifier charged, so we have reservoirs in the mountains that deliver water to percolation ponds throughout this region. As a result, we continue to get drinking water from wells almost to the Bay, and the threat to tree root systems is also held back.
It is difficult to get over shock and horror (not awe) when confronted with significant thoughts about action to solve problems. But I would be interested in thoughts were you to actually want to fix the CO2 problem.
Jim Bullis, Miastrada Co. says
RE your #416 on Science, narrative, and heresy, CM
No, the Labrador Sea data is not a comprehensive proof. I have variously pointed to vertical mixing by hurricanes, storm surges, etc. Massive events such as Tsunamis heave much deep water upwards. Whatever the mechanisms, the fundamental fact is that there is a massive place for heat to go, and it does not take much temperature increase in the deep ocean to erase a lot of temperature increase in the atmosphere.
I am strongly interested in a comprehensive analysis of vertical mixing in the oceans, and the Argo float system seems to be a path to getting this done. I am surprised it has not yeat appeared.
In my #390 (from Science, variations, and heresy) you might note that I quoted the inline comment by Gavin from April 2008 to point out that the models do not seem to have adequate interface with deep ocean effects. Thus, I argue that predictions could be overstating the atmospheric temperature. And I say over and over, this does not mean that the oceans will not show a reaction through rising sea level.
Brian Dodge says
Google searches:
“wind power” scam – About 2,180,000 results (0.29 seconds)
“wind power” unreliable – About 631,000 results (0.58 seconds)
only 2,180,000 outliers say “scam.”
Jim Bullis, Miastrada Co. says
536 JCH
Ugly Jim agrees, paddling a big idea up (or down) river is not easy.
I prefer being called Sweet Old Bullis, though preferably not by the initials. (adapted from Robert Benchley)
Didactylos says
We shouldn’t be afraid of ideas just because they are difficult or expensive.
However, Jim Bullis – you tend to underestimate ideas in various different ways. You think nobody has considered such ideas before, or you ignore good reasons for rejecting the idea, or you gloss over the practical difficulties.
Be pragmatic. Accept your limitations, and try to collaborate in improving and filtering ideas, rather than being a single, lone, failed wannabe visionary. Don’t be an instant expert. Seek out experts, and ask them stuff. Stand on the shoulders of giants, and get used to ditching ideas that don’t work out.
Didactylos says
Brian Dodge:
Google searches:
“wind power” benefit – About 14,200,000 results
“wind power” advantage – About 7,630,000 results
“wind power” -scam – About 44,800,000 results
moon cheese – About 6,750,000 results
Hmmm. I wonder what that means?
Hank Roberts says
Jim above refers to his own prior post at
https://www.realclimate.org/?comments_popup=5308#comment-190825
“I quoted the inline comment by Gavin from April 2008 to point out that the models do not seem to have adequate interface with deep ocean effects.”
See https://www.realclimate.org/?comments_popup=552#comment-83991
adelady says
Australia’s already on top of this one Jim. In my view we should leave the basin alone to do its millions-years-cycle thing …… but there are a couple of spots on the extreme southern coasts where millions years old water literally gushes into the sea. Using some of that to replace what we take from dying rivers or to replenish the basin itself, because it’s been over-extracted for a very long time, would be a good idea. But only if hydrologists and oceanographers can assure us that we won’t create worse problems at the shore and in the southern ocean.
Quick video on the geology and geography of the basin. http://www.environment.gov.au/water/publications/agriculture/video-great-artesian-basin.html
David B. Benson says
Jim Bullis, Miastrada Co. — A starter for MOC rate information is “The ocean heat transport and meridional overturning near 25°N in the Atlantic in CMIP models”:
http://www-pcmdi.llnl.gov/projects/cmip/cmip_abstracts/jia00.pdf
Jim Bullis, Miastrada Co. says
547 Adelady
Glad to hear all is in hand in Australia, though I wonder if you can get enough extra water to grow new forests.
Finding old water gushing into the sea seems like quite a breakthrough though. Are you talking about ‘worse problems’ in comparison to global warming?
Will the basin deliver up water for the rest of East Australia for a million years, even though the land above is bone dry? Well then, there should be some to spare for about 100 years to plant new forests all over the place, huh?
adelady says
Grow new forests? We never _had_ anything you might call “forests” except along the Great Dividing Range, the temperate rainforests of southern Victoria and Tassie and the very impressive jarrah stands in southern WA.
http://en.wikipedia.org/wiki/File:Australia_satellite_plane.jpg This picture is an excellent display of the fact that most of Australia’s 7.5 million sqkm is either desert or semi-arid. In fact it vastly overstates the ‘green’ area of South Australia, I suspect it was taken in late winter or early spring. That’s the only explanation for all that green on Eyre Peninsula. And the white patch in the middle? That’s the salt flats of Lake Eyre.